Chứng minh rằng:
(3^4-3^3)^3/27^3 chia hết cho 2
Lưu ý nhé (3^4-3^3)/27^3 là phân số
Chứng minh rằng: \(\dfrac{\left(3^4-3^3\right)^3}{27^3}\) chia hết cho 2
CMR:\(\dfrac{\left(3^4-3^3\right)^3}{27^3}⋮2\)
\(=\dfrac{\left(3^3.3-3^3\right)^3}{\left(3^3\right)^3}\)
\(=\dfrac{\left[3^3\left(3-1\right)\right]^3}{3^9}\)
\(=\dfrac{3^9\left(3-1\right)^3}{3^9}\)
\(=\left(3-1\right)^3\)
\(=8\)
Ta thấy: \(8⋮2\)
Vì vậy biểu thức \(\dfrac{\left(3^4-3^3\right)^3}{27^3}⋮2\)
Chứng minh rằng :
1) B=1+5+5^2+5^3+5^4+...+5^101 chia hết cho 6
2)C=81^3+3^14+27^5 là bội của 37
3)D=2+2^2+2^3+...+2^60 chia hết cho 3;7;15
4)A=1+3+3^2+3^3+...+3^1991
Giúp mik nhé các bn
1) \(B=1+5+5^2+5^3+....+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{100}+5^{101}\right)\)
\(=\left(1+5\right)+5^2\left(1+5\right)+....+5^{100}\left(1+5\right)\)
\(=\left(1+5\right)\left(1+5^2+....+5^{100}\right)\)
\(=6\left(1+5^2+...+5^{100}\right)\)\(⋮6\)
2) \(C=81^3+3^{14}+27^5\)
\(=\left(3^4\right)^3+3^{14}+\left(3^3\right)^5\)
\(=3^{12}+3^{14}+3^{15}\)
\(=3^{12}.\left(1+3^2+3^3\right)\)
\(=3^{12}.37\)\(⋮37\)
3) \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(=\left(1+2\right)\left(2+2^3+...+2^{59}\right)\)
\(=3\left(2+2^3+...+2^{59}\right)\)\(⋮3\)
chứng minh chia hết cho 7, 15 bạn làm tương tự
chia hết cho 7: bạn nhóm 3 số thành nhóm
chia hết cho 15: bạn nhóm 4 số thành nhóm
Chứng minh rằng : 3 + 3^2 + 3^3 + 3^4 + ... +3^100 chia hết cho 120. (gợi ý : nhóm thành 25 nhóm mỗi nhóm có 4 số hạng )
cho E = 1/3 + 2/3^2 + 3/3 ^3 + 4/3^4 + ... +100/3^100. chứng minh rằng E <3/4
giúp mình 2 bài này nhé
\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{203}{3^{100}}< 3\)
\(\Rightarrow4E< 3\)
\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)
Bài 1:
Ta có: \(3+3^2+3^3+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^5.120+...+3^{96}.120\)
\(=120.\left(1+3^5+.....+3^{96}\right)\)
\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)
1.Chứng minh rằng:
a)A= 27 mũ 27 +3 mũ 77 chia hết cho 82
2.Cho S= 3 mũ 2 +3 mũ 4+.....+3 mũ 998+ 3 mũ 1000
a) Tính S b) chứng minh rằng :S chia hết cho 7 dư 6
Câu 1
A = (x+2017).(x+2018).Chứng tỏ rằng A luôn chia hết cho2
Câu 2
Cho C=3^10+3^11+3^12+...+3^16+3^17. Chứng minh rằng C chia hết cho 40
Câu 3
D= 4^25+4^26+4^27+...=4^29+4^30. Chứng minh rằng D chia hết cho 273
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
1)
+Nếu x lẻ thì x+2017 là chẵn \(⋮2\)
+Nếu x là chẵn thì x+2018 cũng là chãn \(⋮2\)
\(\Rightarrow dpcm\)
1.Chứng minh rằn 3 STN liên tiếp thì sẽ có một số chia hết cho 3
2.Chứng minh rằng 4 STN liên tiếp thì có một số chia hết cho 4
3. Chứng minh rằng Nếu hai STN liên tiếp chùng chia cho 5 và có cùng số dư thì thì hiệu của chúng chia hết cho 5
Chú ý là chữ số liên tiếp một chữ chia hết cho 3 nha chứ ko phải là tổng chia hết cho 3 (áp dụng với bài 4 nữa)
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
Bài 1 : Chứng minh rằng số gồm 27 chữ số 1 thì chia hết cho 27.
Bài 2 : Cho A = 13! - 11!
A có chia hết cho 2 ; cho 5 và cho 155 hay không ?
Bài 3 : Tìm các STN chia cho 4 thì dư 1 , chia cho 25 thì dư 3.
Bài 4 : Tìm các STN chia cho 8 thì dư 3 , chia cho 125 thì dư 12.
Đặt A = 1111....1111 (27 chữ số 1)
A=111...100...0( 9 c/s 1 và 18 c/s 0) +111...100...0(9c/s 1 và 9 c/s 0) + 111...1(9 c/s 1)
= 111...1 . 1018 + 111...1 . 109 + 111...1
= 111...1 .(1018 + 109 + 1)
Vì 111...1 có 9 c/s 1 nên tổng các c/s chia hết cho 9 \(\Rightarrow111...1⋮9\)
và (1018 + 109 + 1) chia hết cho 3 ( có tổng các c/s chia hết cho 3)
nên A= 9.k.3.k'=27.k.k' chia hết cho 27 (đpcm)
Chứng minh rằng một trong 4 số chia hết cho 3.Chứng minh rằng một trong 4 số chia hết cho 3.Chứng minh rằng một trong 4 số chia hết cho 3.
Biết a; b; c là ba số nguyên thỏa mãn (a3 + b3 + c3) chia hết cho 27. Chứng minh rằng: Cả ba số a; b; c đều chia hết cho 3 hoặc hai trong ba số đó có tổng chia hết cho 9