cho x+y+z=1 và x,y,z>0. tìm GTLN của A=xyz(x+y)(y+z)(z+x)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Cho x,y,z > 0 và xyz=1. Tìm GTLN của P = 1/(x^3(y^3+z^3)+1) + 1/(y^3(z^3+x^3)+1) + 1/(z^3(x^3+y^3)+1)
cho x;y;z>0 và xyz=1 .Tìm GTLN của A=1/x^3+y^3+1 +1/y^3+z^3+1 +1/z^3+x^3+1
\(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)
Hai cái còn lại tương tự
=> A \(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{1}{x+y+z}\cdot\frac{x+y+z}{xyz}=1\)
Vậy MAx A = 1 tại x = y = z = 1
Cho x y z > 0 và xyz=1. Tìm GTLN của \(P=\frac{1}{x^4+y^4+z}+\frac{1}{y^4+z^4+x}+\frac{1}{z^4+x^4+y}\)
Xét: \(x^4+y^4-xy\left(x^2+y^2\right)=\left(x^2+y^2+xy\right)\left(x-y\right)^2\ge0\)
\(\Rightarrow x^4+y^4\ge xy\left(x^2+y^2\right)\)(*)
Tương tự với (*) ta có: \(\hept{\begin{cases}y^4+z^4\ge yz\left(y^2+z^2\right)\\z^4+x^4\ge zx\left(z^2+x^2\right)\end{cases}}\)
\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2\right)+z.xyz}=\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2+z^2\right)}=\frac{x+y+z}{x^2+y^2+z^2}\)
Ta có:\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) và \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{1}{\frac{1}{3}\left(x+y+z\right)}\le1\)
Dấu "=" xảy ra khi x=y=z=1
Tìm GTLN của: A = xyz(x + y)(y + z)(z + x)
với x; y; z là các số không âm và x + y + z = 1
Áp dụng bđt Cô si cho 3 số không âm ta được:
1 = x + y + z \(\ge3.\sqrt[3]{xyz}\) (*)
Do đó, 2 = (x + y) + (y + z) + (z + x) \(\ge3.\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (**)
Dễ thấy 2 vế của (*) và (**) đều không âm nên nhân từng vế của chúng ta được: 2 \(\ge9.\sqrt[3]{A}\)
\(\Rightarrow A\le\left(\frac{2}{9}\right)^3\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Vậy ...
Cho x,y,z >0 thoả mãn x+y+z =3. Tìm GTLN của A=xyz/ x+y
\(A=\frac{xyz}{x+y}\Rightarrow\frac{1}{A}=\frac{x+y}{xyz}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{yz+xz}=\frac{4}{z\left(x+y\right)}\)(1)
Lại có \(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\)(theo AM-GM) => \(\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)(2)
Từ (1) và (2) => \(\frac{x+y}{xyz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)=> \(\frac{x+y}{xyz}\ge\frac{16}{9}\)hay \(\frac{1}{A}\ge\frac{16}{9}\)
=> A ≤ 9/16. Đẳng thức xảy ra <=> z = 3/2 ; x = y = 3/4
Vậy MaxA = 9/16 <=> x = y = 3/4 ; z = 3/2
\(9=3^2=\left(x+y+z\right)^2\ge4\left(x+y\right)z\)
\(\rightarrow9.\frac{x+y}{xyz}\ge4.\frac{\left(x+y\right)^2}{xy}\ge4.\frac{4xy}{xy}=16\)
\(\rightarrow\frac{x+y}{xyz}\ge\frac{16}{9}\rightarrow\frac{xyz}{x+y}\le\frac{9}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{3}{4};z=\frac{3}{2}\)
cho x,y,z>0 và xyz=1
Tìm GTLN của \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
Ta đi c/m BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) (*)
Thật vậy (*) \(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(luôn đúng)
Áp dụng vào bài toán:
\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}\)(Do xyz=1)
Tương tự: \(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)};\frac{1}{z^3+x^3+1}\le\frac{1}{zx\left(x+y+z\right)}\)
\(\Rightarrow A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)
Vậy Max A = 1. Dấu "=" xảy ra <=> x=y=z=1.
Cho x y z > 0 và x+y+z=xyz
Tìm GTLN của\(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
áp dụng bunhiacopski ta có:
P^2 =< (1+1+1)(1/1+x^2 + 1/1+y^2+1/1+z^2)= 3(....)
đặt (...) =A
ta có: 1/1+x^2=< 1/2x
tt với 2 cái kia
=> A=< 1/2(1/x+1/y+1/z) =<1/2 ( xy+yz+xz / xyz)=1/2 ..........
đoạn sau chj chịu
^^ sorry
Bài này là câu lớp 8 rất quen thuộc rùiiiiiii !!!!!!!!
gt <=> \(\frac{x+y+z}{xyz}=1\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
=> \(ab+bc+ca=1\)
VÀ: \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)
THAY VÀO P TA ĐƯỢC:
\(P=\frac{1}{\sqrt{1+\frac{1}{a^2}}}+\frac{1}{\sqrt{1+\frac{1}{b^2}}}+\frac{1}{\sqrt{1+\frac{1}{c^2}}}\)
=> \(P=\frac{1}{\sqrt{\frac{a^2+1}{a^2}}}+\frac{1}{\sqrt{\frac{b^2+1}{b^2}}}+\frac{1}{\sqrt{\frac{c^2+1}{c^2}}}\)
=> \(P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
Thay \(1=ab+bc+ca\) vào P ta sẽ được:
=> \(P=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
=> \(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
=> \(2P=2.\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+c}}+2.\sqrt{\frac{b}{b+a}}.\sqrt{\frac{b}{b+c}}+2.\sqrt{\frac{c}{c+a}}.\sqrt{\frac{c}{c+b}}\)
TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:
=> \(2P\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\)
=> \(2P\le\left(\frac{a}{a+b}+\frac{b}{b+a}\right)+\left(\frac{b}{b+c}+\frac{c}{c+b}\right)+\left(\frac{c}{c+a}+\frac{a}{a+c}\right)\)
=> \(2P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\)
=> \(2P\le1+1+1=3\)
=> \(P\le\frac{3}{2}\)
DẤU "=" XẢY RA <=> \(a=b=c\) . MÀ \(ab+bc+ca=1\)
=> \(a=b=c=\sqrt{\frac{1}{3}}\)
=> \(x=y=z=\sqrt{3}\)
VẬY P MAX \(=\frac{3}{2}\) <=> \(x=y=z=\sqrt{3}\)
Cho x,y,z>0 và \(x^2+y^2+z^2+xyz=4\)4. Tìm GTLN và GTNN của biểu thức: P=x+y+z
https://diendantoanhoc.net/topic/167848-x2y2z2xyz4-max-xyz/