7x^2 + 14xy - 4x - 8y
c)x^4-4x^2y^2+y^2+2xy
d)7x^2-14xy^2+7y^4
e)2xy-15-6x+5y
g)9x^2-25y^2-6x+10
c: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
d: \(7x^2-14xy^2+7y^4\)
\(=7\left(x^2-2xy^2+y^4\right)\)
\(=7\left(x-y^2\right)^2\)
(14xy^2 + 21x^2y - 7x^3) : 7x
Phân tích đa thức thành nhân tử
14x^2-14xy-8x+8y
\(14x^2-14xy-8x+8y=14x\left(x-y\right)-8\left(x-y\right)=\left(x-y\right)\left(14x-8\right)\)
\(14x^2-14xy-8x+8y\)
\(=14x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(14x-8\right)\left(x-y\right)\)
\(=2\left(7x-4\right)\left(x-y\right)\)
\(14x^2-14xy-8y+8y=2\left(x-y\right)\left(7x-4\right)\)
cho các số x y thỏa mãn đẳng thức 8x^2+14xy+8y^2 +2x-2y+2=0
\(8x^2+14xy+8y^2+2x-2y+2=0\)
\(\Leftrightarrow7\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Do \(\left\{{}\begin{matrix}7\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ; \(\forall x;y\)
Nên \(7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0;\forall x;y\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
7x^2-14xy^2-7y^4
7x2-14xy2+7y4=7(x2-2xy2+(y2)2) =7(x-y2)2
7x^2-14xy^2-7y^4
Nếu câu hỏi là phân tích đa thức thành nhân tử:
\(7x^2-14xy^2-7y^4=7\left(x^2-2xy^2-\left(y^2\right)^2\right)=7\left(x-y^2\right)^2\)
\(7x^2-14xy+7y^2\)
Phan h da thuc thanh nhan tu a ban ?
Ta co
7x2-14xy+7y2
=7(x2-2xy+y2)
=7(x-y)2
Ta có:\(7x^2-14xy+7y^2\)
\(=7\left(x^2-2xy+y^2\right)\)
\(=7\left(x^2-2.x.y+y^2\right)\)
\(=7\left(x-y\right)^2\)
a, (x+10/4x-8) . (4-2x/x+2)
b, (1-4x^2/x^2+4x) : (2-4x/3x)
c, ( 4y^2/7x^4) : (-8y/35x^2)
d, (x^2-4/3x+12) . (x+4/2x-4)
a: \(\dfrac{x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{x+10}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-\left(x+10\right)}{2\left(x+2\right)}\)
b: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(x-2\right)}\)
\(=\dfrac{3\left(2x-1\right)\left(2x+1\right)}{2\left(x-2\right)\left(x+4\right)}\)
c: \(=\dfrac{4y^2}{7x^4}\cdot\dfrac{35x^2}{-8y}=\dfrac{5}{x^2}\cdot\dfrac{-1}{2}\cdot y=\dfrac{-5y}{2x^2}\)
d: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
5x.(3x+2y)+7x.(8y-4x)
5x . (3x + 2y) + 7x . (8y - 4x)
= 15x^2 + 10xy + 56xy - 28x^2
= 66xy - 13x^2