Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Thi Thu Giang
Xem chi tiết
Hoang Thi Thu Giang
16 tháng 11 2016 lúc 19:29

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

Hà Uyên Nhi
Xem chi tiết
Thanh Hằng Nguyễn
6 tháng 1 2018 lúc 14:02

a/ \(3n+1⋮11-2n\)

Mà \(-2n+11⋮11-2n\)

\(\Leftrightarrow\hept{\begin{cases}6n+2⋮11-2n\\-6n+33⋮11-2n\end{cases}}\)

\(\Leftrightarrow35⋮11-2n\)

\(\Leftrightarrow11-2n\inƯ\left(35\right)\)

Tự xét tiếp!

b/ \(n^2+3⋮n-1\)

Mà \(n-1⋮n-1\)

\(\Leftrightarrow\hept{\begin{cases}n^2+3⋮n-1\\n^2-n⋮n-1\end{cases}}\)

\(\Leftrightarrow n+3⋮n-1\)

Mà \(n-1⋮n-1\)

\(\Leftrightarrow4⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(4\right)\)

\(\Leftrightarrow\) Ta có các trường hợp :

+) n - 1 = 1 => n = 2

+) n - 1 = 2 => n = 3

+) n = 1 = 4 => n = 5

Vậy ...

Thanh Huyền
Xem chi tiết
Le Thi Khanh Huyen
24 tháng 12 2016 lúc 19:17

a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)

Để f(x) chia hết cho x + 2 thì f(-2)=0

\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)

\(-8+4+2+a=0\)

\(a-2=0\)

\(a=2\)

Vậy ...

Le Thi Khanh Huyen
24 tháng 12 2016 lúc 19:22

c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)

\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)

\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)

\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)

\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)

Vậy ...

Le Thi Khanh Huyen
24 tháng 12 2016 lúc 19:29

b) Làm tính chia :

x^3 + ax^2 + 2x + b x^2 + x + 1 x+(a-1) x^3 + x^2 + x (a-1).x^2 + x + b (a-1).x^2 +(a-1)x + (a-1) -ax + b - a + 1

\(\Rightarrow-ax+b-a+1=0\)

Huỳnh Lê Hằng Ny
Xem chi tiết
Nụ cười hạnh phúc
7 tháng 11 2016 lúc 16:02

a) để 2x+3 chia hết x+2 thì 2x+4-1 chia hết x+2

mà 2x+4 chia hết x+2 => 1 chia hết x+2 hay x+2 thuộc ước của 1 = +1; -1

=> x=-1 hoặc x=-3

b) tương tự câu a...bạn tự làm nha...

nguyenvankhoi196a
19 tháng 3 2018 lúc 19:39

a) để 2x+3 chia hết x+2 thì 2x+4-1 chia hết x+2
mà 2x+4 chia hết x+2 => 1 chia hết x+2 hay x+2 thuộc ước của 1 = +1; -1
=> x=-1 hoặc x=-3

:33

Châu Nguyễn
Xem chi tiết
Blue Frost
Xem chi tiết
TRÂN LÊ khánh
Xem chi tiết
Yukru
20 tháng 7 2018 lúc 9:11

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

Như Bảo
Xem chi tiết
Akai Haruma
8 tháng 7 2018 lúc 11:18

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

Akai Haruma
8 tháng 7 2018 lúc 11:23

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

Akai Haruma
8 tháng 7 2018 lúc 11:29

Bài 3:

a,b) \(Q=3+3^2+3^3+...+3^{12}\)

\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)

\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)

Do đó \(Q\vdots 10; Q\vdots 4\)

c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)

\(=13(3+3^4+...+3^{10})\vdots 13\)

Ta có đpcm.

b)

Nguyễn Thiên Hà
Xem chi tiết
titanic
10 tháng 9 2018 lúc 16:55

1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )

\(a,b\in N\Rightarrow10a+3b\in N\)

Do đó\(12.\left(10a+3b\right)⋮12\)

Vậy\(A⋮12\)

2)

a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3

\(6b⋮3\)\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)

b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)

nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)

c) Ta có \(12a⋮12\);\(36b⋮12\)

nên \(12a+36b⋮12\)

Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)

nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)

\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh

P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không