Cho a,b thuộc N , a^2 + b^2 chi hết cho 3
CMR : a chia hết cho 3 ; b chia hết cho 3
Bài 1:CMR:11.a+2.b dấu mũi tên hai chiều 18.a+5.b chia hết cho 19
Bài 2:Cho số tự nhiên a không chia hết cho 2 và 3 .CMR:A=4.a2+3.a+5 chia hết cho 6
Bài 3:CMR:n2+n+2 không chia hết cho 5,với mọi n thuộc N
Bài 4:CMR:a3-5.a chia hết cho 6 với mọi a thuộc N ,lớn hơn 1
Bai 5:CMR:a+2.b chia het cho 3 khi và chỉ khi b+2.a chia hết cho 3
( Làm chi tiết vào nha !)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Tìm n thuộc N,để:
a)3n+1 chia hết cho 11-2n
b)n^2+3 chi hết cho n-1
c)n^2 +3n-13 chia hết cho n +3
a/ \(3n+1⋮11-2n\)
Mà \(-2n+11⋮11-2n\)
\(\Leftrightarrow\hept{\begin{cases}6n+2⋮11-2n\\-6n+33⋮11-2n\end{cases}}\)
\(\Leftrightarrow35⋮11-2n\)
\(\Leftrightarrow11-2n\inƯ\left(35\right)\)
Tự xét tiếp!
b/ \(n^2+3⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\hept{\begin{cases}n^2+3⋮n-1\\n^2-n⋮n-1\end{cases}}\)
\(\Leftrightarrow n+3⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)\)
\(\Leftrightarrow\) Ta có các trường hợp :
+) n - 1 = 1 => n = 2
+) n - 1 = 2 => n = 3
+) n = 1 = 4 => n = 5
Vậy ...
a, Tìm a để đa thức x^3 + x^2-x+a chia hết cho đa thức x+2
b,Tìm a và b để đa thưac x^3+ ax^2+ 2x+b chia hết cho đa thức x^2+x+1
c, Tìm n thuộc Z để gt bt n^3+ n^2-n +5 chi hết cho gt bt n+2
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
b) Làm tính chia :
\(\Rightarrow-ax+b-a+1=0\)
Tìm x thuộc N biết
a) 2x+3 chia hết cho x+2
b) 3x+2 chia hết chi x+3
a) để 2x+3 chia hết x+2 thì 2x+4-1 chia hết x+2
mà 2x+4 chia hết x+2 => 1 chia hết x+2 hay x+2 thuộc ước của 1 = +1; -1
=> x=-1 hoặc x=-3
b) tương tự câu a...bạn tự làm nha...
a) để 2x+3 chia hết x+2 thì 2x+4-1 chia hết x+2
mà 2x+4 chia hết x+2 => 1 chia hết x+2 hay x+2 thuộc ước của 1 = +1; -1
=> x=-1 hoặc x=-3
:33
1) A=19a68b
a) A chia hết cho 2;3;5 và không chia hết cho 9
b) A chia hết cho 45
c) A chia hết cho 3 và chia co 5 dư 3
d) A chia hết cho 9 và a-b=4
2) Tìm n thuộc N để:
a) 20 chia hết cho n
b) n+4 chia hết cho n
c) n+8 chia hết cho n+3
d) n+6 chia hết cho n-1
e) 12-n chia hết cho 8-n
f) 3n + 2 chai hết cho n-1
3) Chứng minh rằng:
A=1+3+32+...+311 chia hết cho 13
B=1+2+22+23+...239 chia hết cho 15
4) Cho a,b thuộc N và a-b chia hết cho 7.Chứng minh rằng 4a + 3b chia hết cho 7
Bài 1: Ch a,b thuộc Z t/m:(17a+5b).(5a+17b) chia hết cho 11.CMR:: (17a+5b)(5a+17b) chia hết cho 121
Bài 2: Cho a,b thuộc N . CMR: ab(a^2-b^2)(4a^2-b^2) chia hết cho 5
Bài 3: Cho a,b thuộc Z.CMR: ab(a^2+b^2)(a^2-b^2) chia hết cho 30
Bài 4: Cho n thuộc Z.CMR: n^6-n^2 chia hết cho 60
CÁC BẠN GIÚP MÌNH NHÉ
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Bài 1: chi A= m2 + m+1 với m thuộc N. Chứng tỏ rằng:
a) A không chia hết cho 2
b) A không chia hết cho 5
Bài 2: Cho P= 2+22+23+...+210
Chứng tỏ rằng:
a) P chia hết cho 3
b) P chia hết cho 31
Bài 3: cho Q=3+32+33+...+312
Chứng tỏ rằng:
a) Q chia hết cho 4
b) Q chia hết cho 10
c) Q chia hết cho 13
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Bài 3:
a,b) \(Q=3+3^2+3^3+...+3^{12}\)
\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)
\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)
Do đó \(Q\vdots 10; Q\vdots 4\)
c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)
\(=13(3+3^4+...+3^{10})\vdots 13\)
Ta có đpcm.
b)
. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không