Chứng minh: 1001 x 1002 x 1003 x ... x 2000 chia hết cho 1 x 3 x 5 x ... x 1999
Cho A = 1001 x 1002 x 1003 x ...... x 2000 và B = 1 x 3 x 5 x 7 x ..... x 1999. Chứng tỏ rằng A chia hết cho B
CMR : A = 1001 x 1002 x 1003 x 1004 x ....... x 2016 chia hết cho tích 1 x 3 x 5 x ...... x 2015
Chứng minh rằng: 1001 x 1002 x...x2000 chia hết 1 x 3 x 5 x...x1999
Trong S1 có các số chia hết cho các thừa số ở S2
< = > S1 chia hết cho S2
=> ĐPCM
Tìm các cặp số nguyên ( x;y) sao cho :
|x-1000|+|x-1001|+|y-1002|+|x-1003|=3
Mình cần gấp lắm ạ!
Giải phương trình:
x-1001/1006 + x-1003/1004 + x-1005/1002 + x-1007/1000 = 4
\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}=4\)
\(\Rightarrow\dfrac{x-1001}{1006}-1+\dfrac{x-1003}{1004}-1+\dfrac{x-1005}{1002}-1+\dfrac{x-1007}{1000}-1=0\)
\(\Rightarrow\dfrac{x-2007}{1006}+\dfrac{x-2007}{1004}+\dfrac{x-2007}{1002}+\dfrac{x-2007}{1000}=0\)
\(\Rightarrow\left(x-2007\right)\left(\dfrac{1}{1006}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}\right)=0\)
Dễ thấy: \(\dfrac{1}{1000}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}>0\Leftrightarrow x-2007=0\Leftrightarrow x=2007\)
Tìm x biết: \(\dfrac{x-1016}{1001}+\dfrac{x-13}{1002}+\dfrac{x+992}{1003}=\dfrac{x+995}{1004}+\dfrac{x-7}{1005}+1\)
\(\dfrac{x-1016}{1001}+\dfrac{x-13}{1002}+\dfrac{x+992}{1003}=\dfrac{x+995}{1004}+\dfrac{x-7}{1005}+1\)
<=>\(\dfrac{x-1016}{1001}-1+\dfrac{x-13}{1002}-2+\dfrac{x+992}{1003}-3=\dfrac{x+995}{1004}-3+\dfrac{x-7}{1005}-2\)
<=>\(\dfrac{x-2017}{1001}+\dfrac{x-2017}{1002}+\dfrac{x-2017}{1003}=\dfrac{x-2017}{1004}+\dfrac{x-2017}{1005}\)
<=>\(\left(x-2017\right)\left(\dfrac{1}{1001}+\dfrac{1}{1002}+\dfrac{1}{1003}-\dfrac{1}{1004}-\dfrac{1}{1005}\right)=0\)
vì 1/1001+1/1002+1/1003-1/1004-1/1005 khác 0 nên x-2017=0<=>x=2017
vậy..........
a) x+2/5 + x+2/6 + x+2/7 = x+2/8 + x+2/9
b) x+9/1000 + x+8/1001 = x+7/1002 + x+6/1003
Thách các bạn làm đc
x+2/5+x+2/6+x+2/7=x+2/8+x+2/9
x+107/105=17/36
x=17/36-107/105
x=-689/1260
\(a.x+\frac{2}{5}+x+\frac{2}{6}+x+\frac{2}{7}=x+\frac{2}{8}+x+\frac{2}{9}\)
\(3x+\left(\frac{2}{5}+\frac{2}{6}+\frac{2}{7}\right)=2x+\left(\frac{2}{8}+\frac{2}{9}\right)\)
\(3x-2x=\left(\frac{2}{5}+\frac{2}{6}+\frac{2}{7}\right)-\left(\frac{2}{8}+\frac{2}{9}\right)\)
\(1x=\frac{689}{1260}=0,54\)
Bài 7 a) Chứng minh rằng
1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 +......+ 1/1999 - 1/2000 = 1/1001 +1/1002+1/1003 +.....+ 1/2000
Bài 7 a) Chứng minh rằng
1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 +......+ 1/1999 - 1/2000 = 1/1001 +1/1002+1/1003 +.....+ 1/2000