Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh anh
Xem chi tiết
minh anh
Xem chi tiết
Lê Minh Đức
2 tháng 3 2016 lúc 23:30

Nhân từng thừa số ở cả tử và mẫu với 16 là ra ý mà

Bùi Đức Anh
Xem chi tiết
Nguyễn Linh Chi
31 tháng 12 2019 lúc 16:01

Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Nguyễn Thành Chung
10 tháng 5 2023 lúc 19:28

Bài này tôi đang ôn trong quyển học sinh giỏi nè

Mai Thanh Hoàng
Xem chi tiết
Nguyễn Linh Chi
31 tháng 12 2019 lúc 16:01

Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
sakura
Xem chi tiết
Phan Thành Tiến
28 tháng 3 2018 lúc 20:38

Sài tích xích ma cho nhanh nhá!!!

công thức chung phần tử là (2x+1)^4+1/4. cho x chạy từ 0 đến 14 

công thức chung phần mẫu là (2x)^4+1/4. cho x chạy từ 1 đến 15

để ko tràn màn hình đặt tích xích ma lên phân số lun.

A=1/1861.

sài vinacal nhanh hơn. casio nó cho ăn bơ 2 phút đấy. ahihi:))

sakura
28 tháng 3 2018 lúc 21:08

bạn giải ra cụ thể được ko

mình ko hiểu

Diệu Anh
10 tháng 8 2018 lúc 9:28

mk cx ko hiểu

ahihi

hihi

hihi

Không Có Tên
Xem chi tiết
Đinh Đức Hùng
4 tháng 8 2017 lúc 14:09

Với mọi n thuộc N* ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)

\(=\left(n^2+n+\frac{1}{2}\right)\left(n^2-n+\frac{1}{2}\right)\)

\(\Rightarrow N=\frac{\left(2^2+2+\frac{1}{2}\right)\left(2^2-2+\frac{1}{2}\right)...\left(2008^2+2008+\frac{1}{2}\right)\left(2008^2-2008+\frac{1}{2}\right)}{\left(1^2+1+\frac{1}{2}\right)\left(1^2-1+\frac{1}{2}\right)...\left(2007^2+2007+\frac{1}{2}\right)\left(2007^2-2007+\frac{1}{2}\right)}\)

\(=\frac{\left(2.3+\frac{1}{2}\right)\left(1.2+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)...\left(2008.2009+\frac{1}{2}\right)}{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)...\left(2007.2008+\frac{1}{2}\right)}\)

\(=\frac{2008.2009+\frac{1}{2}}{\frac{1}{2}}=8068145\)

Anh Mai
Xem chi tiết
Phước Nguyễn
21 tháng 2 2016 lúc 14:07

Ta có một số phân tích sau:  \(a^4+4=\left(a^2-2a+2\right)\left(a^2+2a+2\right)\) 

Nhân mỗi biểu thức trong ngoặc ở cả tử thức và mẫu thức với  \(16=2^4\), ta được:

\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)........\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right).......\left(30^4+\frac{1}{4}\right)}=\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)........\left(58^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)........\left(60^4+4\right)}\)

Kết hợp với cách phân tích đã nêu trên, khi đó

\(A=\frac{\left(2^2-2.2+2\right)\left(2^2+2.2+2\right)\left(6^2-2.6+2\right)\left(6^2+2.6+2\right)\left(10^2-2.10+2\right)\left(10^2+2.10+2\right).........\left(58^2-2.58+2\right)\left(58^2+2.58+2\right)}{\left(4^2-2.4+2\right)\left(4^2+2.4+2\right)\left(8^2-2.8+2\right)\left(8^2+2.8+2\right)\left(12^2-2.12+2\right)\left(12^2+2.12+2\right).........\left(60^2-2.60+2\right)\left(60^2+2.60+2\right)}\)

\(A=\frac{2.10.26.50.82.122........3250.3482}{10.26.50.82.122.170.....3482.3722}=\frac{2}{3722}=\frac{1}{1861}\)

Vậy,  \(A=\frac{1}{1861}\)

Võ Đông Anh Tuấn
21 tháng 2 2016 lúc 13:46

\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right).....\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right).....\left(30^4+\frac{1}{4}\right)}\)=?

Phước Nguyễn
21 tháng 2 2016 lúc 14:06

Ta có một số phân tích sau:  \(a^4+4=\left(a^2-2a+2\right)\left(a^2+2a+2\right)\) 

Nhân mỗi biểu thức trong ngoặc ở cả tử thức và mẫu thức với  \(16=2^4\), ta được:

\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)........\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right).......\left(30^4+\frac{1}{4}\right)}=\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)........\left(58^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)........\left(60^4+4\right)}\)

Kết hợp với cách phân tích đã nêu trên, khi đó

\(A=\frac{\left(2^2-2.2+2\right)\left(2^2+2.2+2\right)\left(6^2-2.6+2\right)\left(6^2+2.6+2\right)\left(10^2-2.10+2\right)\left(10^2+2.10+2\right).........\left(58^2-2.58+2\right)\left(58^2+2.58+2\right)}{\left(4^2-2.4+2\right)\left(4^2+2.4+2\right)\left(8^2-2.8+2\right)\left(8^2+2.8+2\right)\left(12^2-2.12+2\right)\left(12^2+2.12+2\right).........\left(60^2-2.60+2\right)\left(60^2+2.60+2\right)}\)

\(A=\frac{2.10.26.50.82.122........3250.3482}{10.26.50.82.122.170.....3482.3722}=\frac{2}{3722}=\frac{1}{1861}\)

Vậy,  \(A=\frac{1}{1861}\)

Võ Diệu Linh
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
alibaba nguyễn
20 tháng 11 2016 lúc 9:12

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

alibaba nguyễn
20 tháng 11 2016 lúc 6:07

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y

alibaba nguyễn
20 tháng 11 2016 lúc 9:15

Bấm sao mà nói đẩy đáp số lên trên mất rồi

\(\Rightarrow1S=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)