bài này hình như có trong sách Nâng cao phát triển toán 8?
bài này hình như có trong sách Nâng cao phát triển toán 8?
tính giá trị của biểu thức
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)....\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)....\left(20^4+\frac{1}{4}\right)}\)
tính giá trị của biểu thức A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).......\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)........\left(20^4+\frac{1}{4}\right)}\)
tính giá trị của biểu thức \(\frac{\left(\frac{1}{4}+1\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
TÍnh giá trị biểu thức
A=\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Tính giá trị biểu thức
A=\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..........\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right).........\left(30^4+\frac{1}{4}\right)}\)
Tính giá trị của biểu thức:
\(N=\frac{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right).\left(6^4+\frac{1}{4}\right)...\left(2008^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right).\left(5^4+\frac{1}{4}\right)...\left(2007^4+\frac{1}{4}\right)}\)
Tính giá trị biểu thức
\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..........\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..........\left(30^4+\frac{1}{4}\right)}\)
Tính giá trị của biểu thức
\(\frac{\left(1^4+\frac{1}{4}\right)+\left(3^4+\frac{1}{4}\right)+\left(4^4+\frac{1}{4}\right)+...+\left(2013^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)+\left(4^4+\frac{1}{4}\right)+\left(6^4+\frac{1}{4}\right)+...+\left(2014^4+\frac{1}{4}\right)}\)
Tính A=\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)