Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Anh
Xem chi tiết
o0o đồ khùng o0o
6 tháng 1 2017 lúc 14:19

Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)

Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư

Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)

Suy ra 2016.........2016-2016.......2016 chia hết cho 2017

m số 2016        n số 2016

Suy ra 2016...........2016x1000

m-n số 2016

Mà (1000 n ;2017)=1

Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016)                 (đpcm) 

phạm kiều linh
2 tháng 3 2018 lúc 21:31

cố lên

dùng dirichle, xét 2018 số 2016,20162016,....,20162016...2016(2018 số 2016) thì luôn tồn tại 2 số có hiệu chia hết cho 2017, gọi hai số đó là 
20162016...2016(m số 2016) và 20162016...2016(n số 2016) trong đó 1≤m≤n≤20181≤m≤n≤2018
hiệu của chúng là 20162016...201600..0(n số 2016 và m-n số 0) chia hết cho 2017
rút 10m−n10m−n ra và để ý  (10m−n;2017)=1(10m−n;2017)=1.
do đó ta có đpcm

bang Nguyen thai
Xem chi tiết
Thieu Gia Ho Hoang
7 tháng 2 2016 lúc 16:13

bai toan nay kho

ha  khanh duong
Xem chi tiết
mai ngoc hien
Xem chi tiết
Messi
Xem chi tiết
Trần Sơn Việt
18 tháng 6 2016 lúc 8:29

a) Xét 2017 số: 2015;20152015;...

Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)

=> Hiệu của a và b chia hết cho 2016 hay:

a-b=20152015...2015000chia hết cho 2016 (đpcm)

Côn Văn Đồ
19 tháng 2 2017 lúc 21:33

20162016...201600...000 chia het cho 2017

Côn Văn Đồ
19 tháng 2 2017 lúc 21:35

hình như đề bài sai

do thanh thuy
Xem chi tiết
Thắng Nguyễn
23 tháng 12 2015 lúc 18:57

nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017

và dãy 2015 só bắt đầu từ A+2 đều là hợp số :

A+2;A+3;...;A+2015;A+2015;A+2017

bởi vì A+2 chia hết cho 2

A+3 chia hết cho 3

.......

A+2016 chia hết 2016

A+2017 chia hết 2017 ( ĐPCM)

tick nhé

Đặng Anh Thư
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 9:57

Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)

Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k 

Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017

- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)

- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)

\(\Rightarrow2^j-2^i⋮2017\)

\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)

\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)

\(\Rightarrow n=j-i\) thỏa mãn yêu cầu

Trần Khánh Linh
Xem chi tiết
super saiyan goku
Xem chi tiết
quang
25 tháng 12 2016 lúc 17:35

tôi chịu