Xét 2018 số: 2016; 20162016; 201620162016;................; 20162016.........2016 (1)
2018 số 2016
Có 2018 số, mà chỉ có 2017 trường hợp về số dư trong phép chia cho 2017 nên theo nguyên lý Đi rích lê thì có ít nhất 2 số có cùng số dư khi chia cho 2017
Gọi 2 số đó là 20162016..........2016 và 20162016................2016 (1 <= m < n <= 2018)
m chữ số 2016 n chữ số 2016
Xét hiệu:
20162016............2016 - 20162016........2016 = 20162016.........2016.000000....0000
n chữ số 2016 m chữ số 2006 n - m cs 2016 4m chữ số 0
= 20162016........2016.104m chia hết cho 2017
Mà ƯCLN(104m,2017) = 1
=> 20162016.........2016 chia hết cho 2017
n - m cs 2016
Rõ ràng 20162016.......2016 là 1 số thuộc dãy (1)
n - m cs 2016
Vậy tồn tại 1 số gồm toàn cs 2016 chia hết cho 2017
\(\hept{\begin{cases}\\\\\end{cases}}\\ \gamma\)