Gọi d 1 là đồ thị hàm số y = m x + 1 v à d 2 là đồ thị hàm số y = 1 2 x − 2 . Xác định giá trị của m để M(2; −1) là giao điểm của d 1 v à d 2 .
A. m = 1
B. m = 2
C. m = − 1
D. m = − 2
Cho hàm số:y=x+m có đồ thị là đường thẳng (d)
a) Tìm m để đồ thị hàm số đi qua điểm D(1;-2) và vẽ đồ thị hàm số trong hệ trục
tọa độ Oxy. Cho biết điểm E(2;5) có thuộc đồ thị hàm số vừa vẽ không?
b) Gọi E và F lần lượt là giao điểm của đường thẳng (d) với hai trục Ox và Oy. Tìm
m để khoảng cách từ O đến đường thẳng EF bằng 3.
Giúp mik câu b vssss ;-;
\(a,\Leftrightarrow1+m=-2\Leftrightarrow m=-3\\ \Leftrightarrow y=x-3\\ \text{Thay }x=2;y=5\Leftrightarrow5=2-3=-1\left(\text{vô lí}\right)\\ \Leftrightarrow E\notinđths\\ b,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Rightarrow x=-m\Rightarrow E\left(-m;0\right)\Rightarrow OE=\left|m\right|\\x=0\Rightarrow y=m\Rightarrow F\left(0;m\right)\Rightarrow OF=\left|m\right|\end{matrix}\right.\)
Gọi H là chân đường cao từ O đến EF
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OE^2}+\dfrac{1}{OF^2}=\dfrac{1}{2m^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
\(\Leftrightarrow m^2=\dfrac{9}{2}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{\sqrt{2}}\\m=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)
Bài 1: Cho hàm số y = (m - 1) x + m - 3(1) (với m là tham số, m≠1) a) Khi m = 0 hãy v ^ 2 đồ thị hàm số (L) trên mặt phẳng tọa độ Oxy b) Tim m để đồ thị hàm số (1) cắt trục tung tại điểm có tung độ bằng 1 c) Gọi A, B lần lượt là giao điểm của đồ thị hàm số (1) với hai trục tọa độ Ox, Oy. Tim m sao cho tam giác OAB cận.
Cho hàm số y=(m+1)x-2 có đồ thị là đường thẳng d. Tìm m để đồ thị hàm số d cắt đồ thị hàm số y=x+3 tại điểm có tung độ là 2.
Gọi d1 là đồ thị hàm số y = − ( 2 m – 2 ) x + 4 m và d 2 là đồ thị hàm số y = 4 x − 1 . Xác định giá trị của m để M(1; 3) là giao điểm của d1 và d2.
A. m = 1 2
B. m = − 1 2
C. m = 2
D. m = −2
+) Nhận thấy M ∈ d 2
+) Ta thay tọa độ điểm M vào phương trình d1 ta được phương trình
3 = − ( 2 m – 2 ) . 1 + 4 m ⇔ m = 1 2
Vậy m = 1 2
Đáp án cần chọn là: A
Cho hàm số bậc nhất y=(m-2)x+3 (d) (m khác 1)
a) Vẽ đồ thị hàm số khi m=3
b) Tìm m để (d) song song vs đồ thị hàm số y= -5x+1
c) Tìm m để (d) cắt đồ thị hàm số y=x+3 tại 1 điểm nằm bên trái trục
Cho hàm số bậc nhất y = (2m – 1)x + m – 1, với m là tham số.
a) Khi m = 2, vẽ đồ thị của hàm số thu được và tính diện tích tam giác tạo bởi đồ thị và hai trục toạ độ. Gọi đường thẳng đó là (d1)
b) Khi m = - 1, vẽ đồ thị là đường thẳng (d2) của hàm số. Tính khoảng cách từ gốc toạ độ O đến đường thẳng (d2).
c) Chứng minh rằng khi m thay đổi thì các đường thẳng thu được luôn cùng đi qua
một điểm cố định.
Câu 3: (2.5 điểm). Cho hàm số y=(3-m)x+m-1 có đồ thị (d).
1) Tim m để hàm số trên là hàm số bậc nhất.
2) Vẽ đổ thị của hàm số tại m =5
3) Xác định m để (d) song song với đồ thị hàm số y= 2x +3.
a) Để hàm số đồng biến
m-2 >0 => m > 2
b) Đồ thị hàm số đi qua M(1;-3)
=> (m-2).1 - 2 = -3
=> m - 2 = -1 => m = 1
c) Khi m = 3 hàm số trở thành y = x - 2
Cho x = 0 => y = -2 => A(0;-2) \(\in\) d
Cho y = 0 => x = 2 => B(2;0) \(\in\) d
Bài 1: Cho hàm số bậc nhất y=(m-1)x+m+3.(d)
a) Vẽ đồ thị hàm số (d) khi m = - 1
b)Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = - 2x + 1 .
c) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1;-4) .
d) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m
e) Tìm giá trị của m để đổ thị của hàm số tạo với trục tung và trục hoành một tamgiác có diện tích bằng 1(đvdt ).
c: Thay x=1 và y=-4 vào (d), ta được:
\(m-1+m+3=-4\)
\(\Leftrightarrow2m=-6\)
hay m=-3
cho hàm số y=1/4x^2 có đồ thị là (p) và hàm số y=x+m có đồ thị là (d)
a) Vẽ đồ thị (p) của hàm số y=1/4x^2
b) Tìm giá trị của m để (d) tiếp xúc với (p). Tìm tọa độ tiếp điểm
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)