Những câu hỏi liên quan
GIẤU TÊN
Xem chi tiết
Dương Hoàng Anh Văn ( Te...
Xem chi tiết
Bui Huyen
21 tháng 3 2019 lúc 23:17

Ta có bổ đề :

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)

Thật vậy: \(BĐT\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)(luôn đúng vì a/b+b/a>=2)

mà a+b+c=1 nên ta được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

còn bài 2 phần đằng sau là j ạ>???

Bình luận (0)
lê hoàng bảo ngọc
Xem chi tiết
phan tuấn anh
Xem chi tiết
Thắng Nguyễn
1 tháng 4 2017 lúc 21:30

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

Bình luận (0)
alibaba nguyễn
1 tháng 4 2017 lúc 22:59

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

Bình luận (0)
tran thu ha
1 tháng 5 2017 lúc 22:55

bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu

Bình luận (0)
Phạm Minh Quang
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2020 lúc 20:31

Đặt \(\left(a+b-c;a-b+c;-a+b+c\right)=\left(x;y;z\right)\)

\(\Rightarrow p=\frac{a+b+c}{2}=\frac{x+y+z}{2}\) ; \(p-a=\frac{-a+b+c}{2}=\frac{z}{2}\) ...

\(\Rightarrow S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{\frac{xyz\left(x+y+z\right)}{16}}=\frac{1}{4}\sqrt{xyz\left(x+y+z\right)}\)

\(\Rightarrow\sqrt{S}=\frac{1}{2}\sqrt[4]{xyz\left(x+y+z\right)}\)

BĐT trở thành:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[4]{\frac{3}{xyz\left(x+y+z\right)}}\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên chỉ cần chứng minh: \(\frac{1}{\sqrt[3]{xyz}}\ge\sqrt[4]{\frac{3}{xyz\left(x+y+z\right)}}\)

Mũ 12 hai vế: \(\Leftrightarrow\frac{1}{\left(xyz\right)^4}\ge\frac{27}{\left(xyz\right)^3\left(x+y+z\right)^3}\Leftrightarrow\left(x+y+z\right)^3\ge27xyz\)

Hiển nhiên đúng theo AM-GM

Dấu "=" xảy ra khi tam giác đều

Bình luận (0)
Phạm Minh Quang
13 tháng 4 2020 lúc 20:04

@Nguyễn Việt Lâm

Bình luận (0)
nguyễn viết hạ long
Xem chi tiết
Cô Hoàng Huyền
30 tháng 8 2016 lúc 11:26

A B C H x c a b D

Ta có: \(tan\frac{B}{2}=\frac{x}{c}\)

Lại có \(AB=BH=c\Rightarrow HC=a-c\)

Ta có: \(DC^2=DH^2+DC^2\Rightarrow\left(b-x\right)^2=x^2+\left(a-c\right)^2\)

\(\Rightarrow x^2-2bx+b^2=x^2+\left(a-c\right)^2\Rightarrow x=\frac{b^2-\left(a-c\right)^2}{2b}=\frac{a^2-c^2-a^2+2ac-c^2}{2b}\)

\(=\frac{2ac-2c^2}{2b}=\frac{c\left(a-c\right)}{b}\)

\(\left(\frac{x}{c}\right)^2=\frac{\left(a-c\right)^2}{b^2}=\frac{\left(a-c\right)^2}{a^2-c^2}=\frac{a-c}{a+c}\)

\(\Rightarrow tan\frac{B}{2}=\sqrt{\frac{a-c}{a+c}}\)

Bình luận (0)
Phạm Đức Khôi
31 tháng 8 2016 lúc 7:21

ko biet

Bình luận (0)
nguyễn viết hạ long
31 tháng 8 2016 lúc 19:04

\(DC^2=DC^2+DC\) hả bạn

Bình luận (0)
Nguyễn Phương Thảo
Xem chi tiết
nub
25 tháng 5 2020 lúc 14:00

\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\Rightarrow xy+yz+zx=1\)

WLOG \(z\ge y\ge x\)

\(\Rightarrow VT=\frac{x}{\sqrt{y^2+1}}+\frac{y}{\sqrt{z^2+1}}+\frac{z}{\sqrt{x^2+1}}\)

Biến doi \(\sqrt{y^2+1}=\sqrt{y^2+xy+yz+zx}\)

Còn lại tương tự.

Theo bđt Holder:\(VT.VT.\left[\Sigma_{cyc}x\left(y^2+xy+yz+zx\right)\right]\ge\left(x+y+z\right)^3\)

\(\Rightarrow VT^2\ge\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\)

Giờ cần chứng minh: \(\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\ge\frac{9}{4}\)

\(\Leftrightarrow4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)

bđt cuối tương đương 

\(\frac{1}{6}\left[\Sigma_{cyc}\left(5x+7y+3z\right)\left(x-y\right)^2\right]+3\left(x-y\right)\left(y-z\right)\left(z-x\right)\ge0\)

Đứng với cái mình đã WLOG ở trên

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
1 tháng 6 2020 lúc 19:49

Mình nghĩ bài này có điều kiện a, b,c > 0.

Bạn nub đánh nhầm đoạn" \(VT^2\ge\frac{\left(x+y+z\right)^3}{..}\) ..Cần chứng minh..." rồi nhé, nhưng bất đẳng thức cần chứng minh cuối cùng vẫn đúng: \(4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)

Nhưng:

\(VT-VP=\frac{\Sigma\left(6xy+4y^2+yz+\frac{5}{2}z^2\right)\left(x-y\right)^2}{x+y+z}\ge0\)

Đúng vì x, y, z > 0 do a, b, c > 0.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
1 tháng 6 2020 lúc 19:50

Ngoài ra @nub bài này bạn không giả sử z >= y >= x được nhé :P

Bình luận (0)
 Khách vãng lai đã xóa
Cao Tran Tieu Doan
Xem chi tiết
Fire Sky
8 tháng 4 2019 lúc 21:37

\(Để\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\left(đpcm\right)\)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Bình luận (0)
zZz Cool Kid_new zZz
8 tháng 4 2019 lúc 21:52

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

Bình luận (0)
Lê Trường Lân
Xem chi tiết
tth_new
27 tháng 5 2020 lúc 9:05

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
27 tháng 5 2020 lúc 9:13

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
27 tháng 5 2020 lúc 19:31

Thôi đành dồn về bậc dễ chịu hơn vậy :))
\(9=\frac{1}{a^3}+1+\frac{1}{a^3}+\frac{1}{b^3}+1+\frac{1}{b^3}+\frac{1}{c^3}+1+\frac{1}{c^3}\)

\(\ge\frac{3}{a^2}+\frac{3}{b^2}+\frac{3}{c^2}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le3\)

Đến đây ta có đánh giá bằng 2 cách như sau:

Cách 1:

Theo Bunhiacopski ta dễ có:

\(\left[2a+\left(b+c\right)\right]^2\ge4\cdot2a\left(b+c\right)\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{8a\left(b+c\right)}\)

\(\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{\left(b+c\right)^2}\right]\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{4bc}\right]\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{8}\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\right]\)

Khi đó:

\(P\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{8b^2}+\frac{1}{8c^2}+\frac{1}{4b^2}+\frac{1}{8a^2}+\frac{1}{8c^2}+\frac{1}{4c^2}+\frac{1}{8a^2}+\frac{1}{8b^2}\right]=\frac{3}{16}\)

Cách 2:

Áp dụng liên tiếp BĐT phụ dạng \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta dễ có rằng:

\(\frac{1}{\left(2a+b+c\right)^2}=\left(\frac{1}{2a+b+c}\right)^2=\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2=\frac{1}{16}\left[\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(b+c\right)\left(c+a\right)}+\frac{2}{\left(c+a\right)\left(a+b\right)}\)

\(\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

\(\le4\cdot\frac{1}{16}\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

\(=\frac{1}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\le\frac{1}{2}\cdot\left(3+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le3\)

\(\Rightarrow P\le\frac{3}{16}\)

Đẳng thức xảy ra tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa