Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Loan Nguyễn Thị
Xem chi tiết
Gicungko MuheoShopyy
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 21:15

a.

Với \(n=1\Rightarrow4\ge3+1\) (đúng)

Giả sử đẳng thức đúng với \(n=k\ge1\) hay \(4^k\ge3k+1\)

Ta cần chứng minh nó cũng đúng với n=k+1 hay: \(4^{k+1}\ge3\left(k+1\right)+1\)

Thật vậy, ta có:

\(4^{k+1}=4.4^k\ge4\left(3k+1\right)=12k+4=3\left(k+1\right)+1+9k>3\left(k+1\right)+1\) (đpcm)

b.

Với \(n=1\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}>1\) (đúng)

Giả sử BĐT đúng với \(n=k\) hay: \(\dfrac{1}{k+1}+\dfrac{1}{k+2}+...+\dfrac{1}{3k+1}>1\)

\(\Rightarrow\dfrac{1}{k+2}+\dfrac{1}{k+3}+...+\dfrac{1}{3k+1}>1-\dfrac{1}{k+1}\)

Ta cần chứng minh nó cũng đúng với n=k+1 hay:

\(\dfrac{1}{k+2}+\dfrac{1}{k+3}+...+\dfrac{1}{3\left(k+1\right)+1}>1\)

\(\Leftrightarrow\dfrac{1}{k+2}+\dfrac{1}{k+3}+...+\dfrac{1}{3k+4}>1\)

Thật vạy, ta có:

\(\dfrac{1}{k+2}+\dfrac{1}{k+3}+..+\dfrac{1}{3k+4}\)

\(=\dfrac{1}{k+2}+...+\dfrac{1}{3k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}\)

\(>1-\dfrac{1}{k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}\) (1)

Mặt khác ta có:

\(\dfrac{1}{3k+2}+\dfrac{1}{3k+4}-\dfrac{2}{3k+3}=\dfrac{2}{\left(3k+2\right)\left(3k+3\right)\left(3k+4\right)}>0\)

\(\Rightarrow\dfrac{1}{3k+2}+\dfrac{1}{3k+4}>\dfrac{2}{3k+3}\)

\(\Rightarrow\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}>\dfrac{3}{3k+3}=\dfrac{1}{k+1}\) (2)

(1);(2) \(\Rightarrow1-\dfrac{1}{k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}>1\) (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2018 lúc 12:06

Jack Viet
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 12 2021 lúc 10:44

- Với \(n=4\Rightarrow3^3>4.6\) (đúng)

- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\) 

- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)

Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:

\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)

\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)

Nguyễn Quốc Thái
Xem chi tiết
Phước Hoàng
Xem chi tiết
võ Thúc Trí
Xem chi tiết
Nguyễn Khánh Tùng
Xem chi tiết
elsa frozen
Xem chi tiết
nguyễn minh hiếu A
9 tháng 3 2016 lúc 20:59

ko hỉu viết lại đề bài đi như thế này à ?

chứng minh rằng với mọi n ta có n5/5 + n5: 3+7n/15 thuộc Z

nguyen hoang son
9 tháng 3 2016 lúc 21:01

2) P = n^5/5 + n^3/3 + 7n/15 = 
= (n^5 - n + n)/5 + (n^3 -n +n)/3 + 7n/15 
= (n^5 -n)/5 + (n^3 -n)/3 + n/5 + n/3 + 7n/15 

* từ câu d ta có n^5 - n chia hết cho 30 => n^5 -n chia hết cho 5 
=> (n^5 - n)/5 = a (thuộc Z) 

* n^3 - n = n(n²-1)(n²+1) = (n-1)n(n+1)(n²+1) có tích của 3 số nguyên liên tiếp nên chia hết cho 3 
=> (n^3 - n)/3 = b (thuộc Z) 

* n/5 + n/3 + 7n/15 = 15n/15 = n (thuộc Z) 

Vậy: P = a + b + n thuộc Z

Nguyễn Đại An
24 tháng 3 2020 lúc 20:33

chứng minh rằng với mọi n ta có n^5/5 +n^3/3+7n/15 thuộc Z

Khách vãng lai đã xóa
elsa frozen
Xem chi tiết
Noo Phước Thịnh
9 tháng 3 2016 lúc 17:36

<

duyet nha