1.3*3
B = 3/2 + 3/6 + 3/12 + 3/15 +............... + 3/(n-1)n
C = 2/1.3 + 2/3.5 + 2/7.9 + ...................... + 2/30.32
D = 1/1.3 + 1/3.5 + ............. + 1/ ( n+1 )( n+3 )
Em xem lại đề câu B nhé\(B=\dfrac{3}{2}+\dfrac{3}{6}+\dfrac{3}{12}+\dfrac{3}{20}+...+\dfrac{3}{\left(n-1\right).n}\\ =3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{\left(n-1\right).n}\right)\\ =3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)=3.\left(1-\dfrac{1}{n}\right)=3.\dfrac{n-1}{n}=3-\dfrac{3}{n}.\)
\(C=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{30.32}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{30}-\dfrac{1}{32}\\ =1-\dfrac{1}{32}=\dfrac{31}{32}.\)
\(D=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n+1}-\dfrac{1}{n+3}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{n+3}\right)=\dfrac{1}{2}.\dfrac{n+2}{n+3}.\)
a.Tính: 1/1-1/3; 1/3-1/5
b.Chứng minh rằng: 2/1.3= 1/1-1/3; 2/3.5=1/3-1/5
c.Tính: A=2/1.3+2/3.5+...+2/97.99+2/99.101
Giúp mk vs ạ mk sắp phải nộp r
a. \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3-1}{3}=\dfrac{2}{3}\); \(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5-3}{15}=\dfrac{2}{15}\)
b. Ta có \(VP=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\) mà \(VP=\dfrac{2}{3}\) \(\Rightarrow VT=VP\)
Ta có \(VP=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\) mà \(VP=\dfrac{2}{3.5}=\dfrac{2}{15}\) \(\Rightarrow VT=VP\)
c. \(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)
\(=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}+\dfrac{1}{99.101}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\left(1-\dfrac{1}{101}\right)\) \(=\dfrac{200}{101}\)
a: \(\dfrac{1}{1}-\dfrac{1}{3}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)
b: \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)
c: Ta có: \(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
3/1.3+3/3.5+...+3/2015.2017
\(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{2015.2017}\)
\(=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2015.2017}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{2017}\right)\)
\(=\frac{3}{2}.\frac{2016}{2017}\)
\(=\frac{3024}{2017}\)
_Chúc bạn học tốt_
\(\frac{3}{1.3}\)+ \(\frac{3}{3.5}\)+ ... + \(\frac{3}{2015.2017}\) = (3 - 1) : 2 + (1 - \(\frac{3}{5}\)) : 2 + ... + (\(\frac{3}{2015}\)- \(\frac{3}{2017}\)) : 2
= (3 - 1 + 1 -\(\frac{3}{5}\)+ ... + \(\frac{3}{2015}\) - \(\frac{3}{2017}\)) : 2
= (3 - \(\frac{3}{2017}\)) : 2
= \(\frac{6048}{2017}\) : 2
= \(\frac{3024}{2017}\)
D= 3/1.3+3/3.5+....................................+3/49.51
D = \(\frac{3}{1.3}\) + \(\frac{3}{3.5}\)+.......+ \(\frac{3}{49.51}\)
D = \(\frac{3.2}{1.3.2}\)+ \(\frac{3.2}{3.5.2}\)+ .....+ \(\frac{3.2}{49.51.2}\)
D = \(\frac{3}{2}\)( \(\frac{2}{1.3}\)+ \(\frac{2}{3.5}\)+...+ \(\frac{2}{49.51}\))
D = \(\frac{3}{2}\)( \(\frac{1}{1}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)-\(\frac{1}{5}\)+ .....+ \(\frac{1}{49}\)- \(\frac{1}{51}\))
D = \(\frac{3}{2}\)( 1 - \(\frac{1}{51}\))
D = \(\frac{3}{2}\) x \(\frac{50}{51}\)
D = \(\frac{25}{17}\)
Vậy D = \(\frac{25}{17}\)
**** xcho mình nha bn !!!!
3/1.3 + 3/3.5 + 3/5.7 +...+ 3/49.51
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(=\frac{2}{3}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\frac{50}{51}=\frac{20}{51}\)
Ủng hộ mk nha !!! ^_^
25/17 mới đúng
3/1.3 + 3/3.5 + 3/5.7 + ... + 3/49.50
\(\frac{3}{1.3}\)+ \(\frac{3}{3.5}\)+ \(\frac{3}{5.7}\)+...+ \(\frac{3}{49.51}\)
= \(\frac{3}{2}\)( \(\frac{2}{1.3}\)+ \(\frac{2}{3.5}\)+ \(\frac{2}{5.7}\)+...+ \(\frac{2}{49.51}\))
= \(\frac{3}{2}\)( \(\frac{1}{1}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+...+ \(\frac{1}{49}\)- \(\frac{1}{51}\))
= \(\frac{3}{2}\)( 1- \(\frac{1}{51}\))
= \(\frac{3}{2}\). \(\frac{50}{51}\)
= \(\frac{25}{17}\).
3/1.3+3/3.5+3/5.7+....+3/97.99
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +....... + 1/97 - 1/99
= 1- 1/99
= 98/99
Mãi yêu chàng trai Song Tử:bạn làm vầy là ngu roày
3/1.3+3/3.5+3/5.7+....+3/97.99=98/99
3/1.3 + 3/3.5 + 3/5.7 + ... +3/49.51
3/1.3 + 3/3.5 + 3/5.7 + ....... + 3/49.51
= 3 x ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/49.51 )
= 3 x ( 1 - 1/51 )
= 3 x 50/51
= 150/151
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
3/1.3+3/3.5+3/5.7+......+3/47.49
3/1.3+3/3.5+3/5.7+......+3/47.49
=1/1-1/3+1/3-1/5+1/5-1/7+........+1/47-1/49
=1/1-1/49
=49/49-1/49
=48/49
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +......+ 1/47 - 1/49
= 1 - 1/49
= 48/49 nha!
*** Ai k mk mk k lại !!***