Giải phương trình: 3x – 15 = 2x(x – 5)
Bài 1 a) Giải phương trình: 2x - y = 5 b) Giải phương trình: 2x - x-5 = 0 (3x + 2y = 15
Giải các phương trình sau bằng cách đưa về phương trình tích
a) 2x(x-5)+4(x-5)=0
b) 3x-15=2x(x-5)
c) (2x+1)(3x-2)=(5x-8)(2x+1)
d) (4x^2-1+(2x+1)(3x-5)
\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{5;-2\right\}\)
\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)
Câu d xem lại đề
giải bất phương trình
3x - 15 = 2x ( x-5)
Này là phương trình mà?
3x - 15 = 2x.(x - 5)
<=> 3x - 15 = 2x^2 - 10x
<=> 3x - 15 - 2x^2 + 10x = 0
<=> -2x^2 + 13x - 15 = 0
<=> -2x^2 + 10x + 3x - 15 = 0
<=> -2x ( x - 5 ) + 3 ( x - 5 ) = 0
<=> ( x - 5 ) ( -2x + 3 ) = 0
Tới đây dễ rồi nhé
3<x-5>=2x<x-5>
<x-5><3-2x>=0
còn nhiêu tư làm nhé
Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Giải các phương trình sau:
a,|-5x|+|7-x|=27
b,|3x-1|+|x+4|=21
c,2|3x|-5|x+2|=-7
d,|3x-5|+2=|15-3x|
e,|2x+1|-|5-3x|=2
Giải các phương trình sau x(x+5)+2x+10=0. ; 3x(x-3)-5x+15=0
`x(x+5)+2x+10=0`
`<=>x(x+5)+2(x+5)=0`
`<=>(x+5)(x+2)=0`
\(< =>\left[{}\begin{matrix}x+5=0\\x+2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-5\\x=-2\end{matrix}\right.\)
`3x(x-3)-5x+15=0`
`<=>3x(x-3)-5(x-3)=0`
`<=>(x-3)(3x-5)=0`
\(< =>\left[{}\begin{matrix}x-3=0\\3x-5=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=3\\x=\dfrac{5}{3}\end{matrix}\right.\)
Giải các phương trình sau
a.x(2x-9)=3x(x-5)
b.0.5x(x-3)=(x-3)(1.5x-1)
c.3x-15-2x(x-5)
giải phương trình (x-1)^3+(2x-3)^3+(3x-5)^3-3.(x-1)(2x-3)(3x-5)=0
Các bn ơi mình cần ngay trong 15' nx help me
*Gọi a=x-1, b=2x-3, c=3x-5.
-Phương trình trở thành:
a3+b3+c3-3abc=0 ⇔(a+b)3+c3-3ab(a+b)-3abc=0
⇔(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=0
⇔(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0
⇔(a+b+c)(a2+b2+c2-ab-ac-bc)=0
⇔a+b+c=0 hay a2+b2+c2-ab-ac-bc=0
*a+b+c=0 ⇔x-1+2x-3+3x-5=0 ⇔6x-9=0 ⇔x=\(\dfrac{3}{2}\)
*a2+b2+c2-ab-ac-bc=0
Vì a2+b2+c2-ab-ac-bc≥0 và dấu bằng xảy ra khi và chỉ khi a=b=c nên
=>x-1=2x-3 ⇔x=2
=>x-1=3x-5 ⇔x=2
=>2x-3=3x-5⇔ x=2