Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2019 lúc 10:24

Phương trình đã cho tương đương với phương trình:

2(x − k) =  x - 1 2  hoặc 2(x − k) = - x - 1 2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta vẽ đồ thị của hai hàm số: y = − x 2  + 4x – 1 và y =  x 2  + 1

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị ta suy ra:

    • 2k > 3 : phương trình có hai nghiệm;

    • 2k = 3 : phương trình có ba nghiệm;

    • 2 < 2k < 3 : phương trình có bốn nghiệm;

    • 2k = 2 : phương trình có ba nghiệm;

    • 1 < 2k < 2 : phương trình có bốn nghiệm ;

    • 2k = 1 : phương trình có ba nghiệm ;

    • 2k < 1 : phương trình có hai nghiệm.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(1) : phương trình có bốn nghiệm;

(2): phương trình có ba nghiệm ;

(3): phương trình có hai nghiệm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2018 lúc 11:51

Khảo sát sự biến thiên và vẽ đồ thị của hàm số y =  x + 1 2 .(2 − x).

y = − x 3  + 3x + 2 ⇒ y′ = −3 x 2  + 3

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị hàm số ta suy ra:

    • k > 4 hoặc k < 0: phương trình có một nghiệm;

    • k = 4 hoặc k = 0 : phương trình có hai nghiệm;

    • 0 < k < 4: phương trình có ba nghiệm.

Nhók khờ cuồng Thiên Thi...
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 11:21

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Fancy UvU
Xem chi tiết
Hòa Huỳnh
Xem chi tiết
Minh Hiếu
19 tháng 2 2022 lúc 8:53

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

Linh Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 22:56

a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]

Bảng biến thiên là:

x-∞2+∞
y-∞1-∞

 

Tâm Cao
Xem chi tiết
Ngô Thành Chung
13 tháng 3 2021 lúc 19:42

Phương trình tương đương

\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)

Nếu m = 0 thì phương trình vô nghiệm

Nếu m ≠ 0 thì S = {m + 2}

Lê Thảo Anh
Xem chi tiết
anonymous
16 tháng 12 2020 lúc 22:57

undefined