cho đa thức bậc 4 sao cho : P(-1)=0 va P9x)-P(x-1)=x(x+1)(2x+1)
cho da thuc bac 4 sao P(-1)=0 va P9x)-P(x-1)=x(x+1)(2x+1)
Cho đa thức bậc 4 P(x) thỏa mãn : P(-1) = 0 và P(x) - P(x-1) = x(x+1)(2x+1). Xác định P(x)
\(P\left(x\right)-P\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)
\(\Rightarrow P\left(0\right)-P\left(0-1\right)=0\Rightarrow P\left(0\right)=P\left(-1\right)=0\)
\(P\left(-1\right)-P\left(-1-1\right)=\left(-1\right).\left(-1+1\right)\left(-2+1\right)=0\)
\(\Rightarrow P\left(-1\right)=P\left(-2\right)=0\)
\(\Rightarrow P\left(x\right)\) được viết dưới dạng: \(P\left(x\right)=kx\left(x+1\right)\left(x+2\right)\left(x-a\right)\) (với \(k\ne0\))
\(P\left(x\right)-P\left(x-1\right)=kx\left(x+1\right)\left(x+2\right)\left(x-a\right)-k.\left(x-1\right)x\left(x+1\right)\left(x-a-1\right)\)
\(=k.x\left(x+1\right)\left[\left(x+2\right)\left(x-a\right)-\left(x-1\right)\left(x-a-1\right)\right]\)
\(=x\left(x+1\right)\left(4kx-k\left(3a+1\right)\right)\)
Mà \(P\left(x\right)-P\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}4k=2\\-k\left(3a+1\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\dfrac{1}{2}\\a=-1\end{matrix}\right.\)
Vậy \(P\left(x\right)=\dfrac{1}{2}x\left(x+1\right)^2\left(x+2\right)\)
Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a}
\)
pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe
1. Phân tích đa thức thành nhân tử
B=(x-y)^3 + (y-z)^3 + (z-x)^3 ( phương pháp xét giá trị riêng)
2. Cho đa thức hãy phân tích Y thành tidch của 1 đa thức bậc nhất với 1 đa thức bậc 3 có hệ số nguyên sao cho hệ số cao nhất của đa thức bậc 3 là 1
Y= 3x^4 + 11x^3 - 7x^2 - 2x + 1 (pp dùng hệ số bất định)
Cho đa thức f(x) bậc bốn thỏa mãn 2 điều kiện sau: f(-1)=0 và f(x)-f(x-1)=x(x+1)(2x+1)
Bài 1. (2,0 điểm) Cho hai đa thức P(x) = 5x3 – 3x + 7 – x;
Q(x) = –5x3 + 2x – 3 + 2x – x2 – 2.
a) Thu gọn hai đa thức P(x), Q(x) và xác định bậc của hai đa thức đó.
b) Tìm đa thức M(x) sao cho P(x) = M(x) – Q(x).
c) Tìm nghiệm của đa thức M(x).
a: \(P\left(x\right)=5x^3-4x+7\)
Bậc 3
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
Bậc 3
b: M(x)=P(x)+Q(x)
=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
c: M(x)=0
=>2-x^2=0
=>\(x=\pm\sqrt{2}\)
Cho f(x) là đa thức bậc hai, biết f(0)=2; f(x)-f(x-1)=2x-6. Xác định đa thức f(x)
Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$
Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$
Cho P(x) là đa thức bậc 4 thỏa mãn các điều kiện :P(x)-P(x-1)=x(x-1)(2x+1) và P(-1)=1 .Xác định đa thức P(x)
Cho 2 đa thức p(x)=4x^3+2x-3+2x-2x^2-1 và q(x)=6x^3-3x+5-2x+3x^2.
a. Tìm bậc của p(x) và q(x)
b. Tìm đa thức m(x) sao cho m(x)=p(x)+q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)