Cho hai số tự nhiên a và b thỏa mãn (a,b) = 1. Chứng minh rằng (a + b, ab) = 1
Cho hai số tự nhiên a và b thỏa mãn (a, b) = 1. Chứng minh rằng (a + b, ab) = 1
1/ Chứng minh rằng : n.( n+1). ( a.n+1) chia hết cho 2 và 3
2/ Chứng minh rằng: Nếu a,b thuộc tập số tự nhiên ; a chia hết cho b ; b chia hết cho a thì a = b
3/ Tìm 2 số tự nhiên a và b thỏa mãn ( a+b).( a-b) = 2014
cho 2 số tự nhiên a, b thỏa mãn 2008a^2 + a = 2009b^2 + b. Chứng minh rằng b - a và 2008a + 2008b + 1 là số chính phương.
Ta có : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2008\left(a^2-b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2008b+2008b+1\right)=b^2\) (1)
Mặt khác : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2009a^2-2009b^2+\left(a-b\right)=a^2\)
\(\Leftrightarrow2009\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\)
\(\Leftrightarrow\left(a-b\right)\left(2009a+2009b+1\right)=a^2\) (2)
Từ (1) và (2)
\(\Rightarrow\left(a-b\right)^2\left(2008a+2008b+1\right)\left(2009a+2009b+1\right)=\left(ab\right)^2\) (*)
Nếu : \(a=b\) thì từ (*)
\(\Rightarrow\hept{\begin{cases}a-b=0\\2008+2008b+1=1\end{cases}}\) đều là số chính phương
Nếu \(a\ne b\) thì từ (*) \(\Rightarrow2008a+2008b+1,2009a+2009b+1\) là số chính phương
Gọi \(\left(2008a+2008b+1,2009a+2009b+1\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2008a+2008b+1⋮d\\2009a+2009b+1⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b⋮d\\2009\left(a+b\right)+1⋮d\end{cases}}\)
\(\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)
\(\Rightarrow\left(2008a+2008b+1,2009a+2009b+1\right)=1\)
mà : \(2008a+2008b+1,2009a+2009b+1\) là số chính phương
\(\Rightarrow2008a+2008b+1,2009a+2009b+1\) đồng thời là số chính phương
Nên từ (1) \(\Rightarrow a-b\) là số chính phương.
Vậy : bài toán được chứng minh .
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
cho a và b là các số tự nhiên thỏa mãn: 2006a2+a=2007b2+b. chứng minh rằng a-b là 1 số chính phương
Cho 3 số tự nhiên a,b,c thỏa mãn đồng thời 2 điều kiện: a-b là số nguyên tố và 3\(c^2\)=c(a+b)+ab. Chứng minh rằng 8c+1 là số chính phương
Điều kiện đề bài ⇒(2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do a−b=p∈Pa−b=p∈P nên d=1d=1hoặc d=pd=p
Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)
⇒p=(x−y)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=a−b+12x=p+12=a−b+12 và y=a−b−12y=a−b−12
⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp
Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)
⇒(m−n)(m+n)=1→m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)
Cho các sô thực dương a,b,c thỏa mãn \(c+\frac{1}{b}=a+\frac{a}{b}\) . Chứng minh rằng ab là lập phương của một số tự nhiên.
cá voi xanh không ? :))))
Cho hai số tự nhiên a, b thỏa mãn \(a^2+b^2+1=2ab+2a+2b\). Chứng minh rằng \(a\)và \(b\)là hai số chính phương liên tiếp.
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)
\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)
Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)
Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)
Vậy a và b là hai số chính phương liên tiếp.
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1