tìm các cặp số nguyên x,y
a)(2x-1)(y-4)=-13
Tìm cặp số nguyên x,y biết: (2x-1).(y-4)=-13
\(\Rightarrow\left(2x-1\right)\left(y-4\right)=-13\cdot1=-1\cdot13\)
Ta có bảng:
\(2x-1\) | -13 | 1 | -1 | 13 |
\(y-4\) | 1 | -13 | 13 | -1 |
\(x\) | -6 | 1 | 0 | 7 |
\(y\) | 5 | -9 | 17 | 3 |
(2x-1).(y-4)=13
⇔\(2xy-8x-y+4=13\)
⇔\((2xy-y)-(8x-4)=13\)
⇔\(y(2x-1)-4(2x-1)=13\)
⇔\((y-4)(2x-1)=13\)
⇔\((y-4)(2x-1)-13=0\)
⇔\(\left\{{}\begin{matrix}y-4=0\\2x-1=0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}y=4\\2x=1\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}y=4\\x=0,5\end{matrix}\right.\)
1.Tìm số nguyên x
a,2x-5 chia hết cho x-1
b,3x+4 chia hết cho x-3
c,x-2 là ước của x2+8
2,Tìm x=Z
a,3x+2 chia hết cho x-1
b,x2+2x-7 chia hết cho x+2
3,Tìm cặp số nguyên x,y
a,(x-1).(y+1)=5
b,x.(y+2)= -8
Làm ơn mn giải nhanh giúp mình ngày mai mình phải nộp r!
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Tìm các cặp số nguyên x,y tm 2x^2-8x=13-3y^2
\(2x^2-8x=13-3y^2\)
\(\Leftrightarrow2x^2-8x+8=21-3y^2\)
\(\Leftrightarrow2\left(x-4\right)^2=21-3y^2\) (1)
Do \(2\left(x-4\right)^2\ge0;\forall x\Rightarrow21-3y^2\ge0\)
\(\Rightarrow y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)
Mặt khác vế trái của (1) là chẵn, 21 là số lẻ \(\Rightarrow3y^2\) lẻ
\(\Rightarrow y^2\) lẻ \(\Rightarrow y^2=1\Rightarrow y=\pm1\)
Thế vào (1) \(\Rightarrow2\left(x-4\right)^2=18\Rightarrow\left(x-4\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(7;1\right);\left(7;-1\right);\left(1;1\right);\left(1;-1\right)\)
Tìm các cặp số nguyên (x,y) nguyên biết
(x-13).y-(11+x).7=9(x+11).y-(11+x).7=5(2x-1).y+(1-2x).3=17(x+23).y-x=4(x+5).x.y-x-5=31
tìm các cặp số nguyên (x;y) thỏa : \(\sqrt{x^2-2x+13}=y\)
tìm các cặp số nguyên x và y biết x+y=4 va |2x+1|+|y-x|=5
Tìm tất cả các số nguyên x,y
a)\(\dfrac{x}{2}=\dfrac{y}{5} mà x+y=35\)
b)\(\dfrac{x+2}{y+10}=\dfrac{1}{5} và y-3x=2\)
c)\(\dfrac{x}{4}=\dfrac{y}{5} và 2x-y=15\)
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
Tìm các cặp số nguyên x và y thỏa mãn pt \(\sqrt{x^2-2x+13}\)=y
ĐK : \(x;y\in Z;y\ge0\)
\(\sqrt{x^2-2x+13}=y\)
\(\Leftrightarrow x^2-2x+13=y^2\)
\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp
Làm tiếp hộ mk !!!! xem mk làm có đúng ko ><