Giải các hệ phương trình sau và minh họa bằng hình học kết quả tìm được: 2 x + 5 y = 2 2 5 x + y = 1
Giải các hệ phương trình sau và minh họa bằng hình học kết quả tìm được: 0 , 2 x + 0 , 1 y = 0 , 3 3 x + y = 5
Vậy hệ phương trình có nghiệm duy nhất (2; -1).
KL: Đồ thị hai hàm số trên cắt nhau tại điểm (2; -1). Vậy (2; -1) là nghiệm của hệ phương trình
Giải các hệ phương trình sau và minh họa bằng hình học kết quả tìm được: 3 2 x - y = 1 2 3 x - 2 y = 1
Phương trình 0x = 0 nghiệm đúng với mọi x nên hệ phương trình có vô số nghiệm dạng
KL: Đồ thị hai hàm số trên trùng nhau. Vậy hệ phương trình có vô số nghiệm
Giải các hệ phương trình sau và minh họa bằng hình học kết quả tìm được:
Phương trình 0x = -3 vô nghiệm nên hệ phương trình vô nghiệm.
Minh họa hình học:
Tập nghiệm của phương trình 2x + 5y = 2 được biểu diễn bởi đường thẳng (d1)
Tập nghiệm của phương trình được biểu diễn bởi đường thẳng (d2).
KL: Đồ thị hai hàm số trên song song. Điều này chứng tỏ hệ phương trình trên vô nghiệm
Vậy hệ phương trình có nghiệm duy nhất (2; -1).
KL: Đồ thị hai hàm số trên cắt nhau tại điểm (2; -1). Vậy (2; -1) là nghiệm của hệ phương trình
Phương trình 0x = 0 nghiệm đúng với mọi x nên hệ phương trình có vô số nghiệm dạng
KL: Đồ thị hai hàm số trên trùng nhau. Vậy hệ phương trình có vô số nghiệm
Hãy minh họa bằng hình học tập nghiệm của hệ phương trình (1 ) x + y = 4 ; ( 2 ) 2x - y = -1
(1): x+y=4
=>y=4-x
(2): 2x-y=-1
=>y=2x+1
Giải các phương trình sau bằng hai cách (phương trình tích; bằng công thức nghiệm) và so sánh kết quả tìm được: 2 x 2 - 2 x = 0
Minh họa hình học tập nghiệm của mỗi hệ phương trình sau: x + y = 1 3 x + 0 y = 12
*Ta có: x + y = 1 ⇔ y = -x + 1
Cho x = 0 thì y = 1 ⇒ (0; 1)
Cho y = 0 thì x = 1 ⇒ (1; 0)
*Ta có: 3x + 0y = 12 ⇔ x = 4
Hai đường thẳng cắt nhau tại P(4; -3) nên nghiệm của hệ phương trình là (x; y) = (4; -3)
Đồ thị:
Cho hệ phương trình I V 4 x + y = 2 8 x + 2 y = 1
Bằng minh họa hình học và phương pháp thế, chứng tỏ rằng hệ (IV) vô nghiệm.
QUẢNG CÁO
Hai đường thẳng trên song song nên chúng không có điểm chung hay hệ phương trình (IV) vô nghiệm.
Phương pháp thế:
Ta có ( biểu diễn y theo x từ phương trình thứ nhất):
Vậy hệ phương trình (IV) vô nghiệm.
Giải các phương trình sau bằng hai cách (phương trình tích; bằng công thức nghiệm) và so sánh kết quả tìm được: 5 x 2 - 3x = 0
Cho hệ phương trình
(IV) 4 x + y = 2 8 x + 2 y = 1
Bằng minh họa hình học và phương pháp thế, chứng tỏ rằng hệ (IV) vô nghiệm.
Hai đường thẳng trên song song nên chúng không có điểm chung hay hệ phương trình (IV) vô nghiệm.
Phương pháp thế:
Ta có ( biểu diễn y theo x từ phương trình thứ nhất):
Vậy hệ phương trình (IV) vô nghiệm.