lim x → + ∞ 3 x - 5 sin 2 x + c o s 2 x x 2 + 2 bằng:
A. -∞.
B. 0.
C. 3.
D. +∞.
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow a}\dfrac{\sin x-\sin a}{x-a}\)
b) \(\lim\limits_{x\rightarrow1}\left(1-x\right)\tan\dfrac{\pi x}{2}\)
c) \(\lim\limits_{x\rightarrow\dfrac{\pi}{3}}\dfrac{2\sin^2x+\sin x-1}{2\sin^2x-3\sin x+1}\)
d) \(\lim\limits_{x\rightarrow0}\dfrac{\tan x-\sin x}{\sin^3x}\)
Giúp em những câu này với ạ!
a) \(\lim\limits_{x\to a} \dfrac{\sin x -\sin a}{x-a}\)
b) \(\lim\limits_{x\to \pi} \dfrac{1-\sin \dfrac{x}{2}}{\pi-x}\)
c) \(\lim\limits_{x\to \dfrac{\pi}{3}} \dfrac{\sin(x-\dfrac{\pi}{3})}{1-2\cos x}\)
d) \(\lim\limits_{x\to a} \dfrac{\tan^2 x - \tan^2 a}{\tan(x-a)}\)
\(\lim\limits_{x\rightarrow a}\frac{sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}.cos\left(\frac{x+a}{2}\right)=1.cos\left(\frac{a+a}{2}\right)=cosa\)
b/ \(\lim\limits_{x\rightarrow\pi}\frac{sin\frac{\pi}{2}-sin\frac{x}{2}}{\pi-x}=\lim\limits_{x\rightarrow\pi}\frac{sin\left(\frac{\pi-x}{4}\right)}{\frac{\pi-x}{4}}.\frac{cos\left(\frac{\pi+x}{4}\right)}{2}=\frac{cos\left(\frac{\pi+\pi}{4}\right)}{2}=0\)
c/ Đặt \(x-\frac{\pi}{3}=a\Rightarrow x=a+\frac{\pi}{3}\)
\(\lim\limits_{a\rightarrow0}\frac{sina}{1-2cos\left(a+\frac{\pi}{3}\right)}=\lim\limits_{a\rightarrow0}\frac{sina}{1-cosa+\sqrt{3}sina}\)
\(=\lim\limits_{a\rightarrow0}\frac{2sin\frac{a}{2}cos\frac{a}{2}}{-2sin^2\frac{a}{2}+2\sqrt{3}sin\frac{a}{2}cos\frac{a}{2}}=\lim\limits_{a\rightarrow0}\frac{cos\frac{a}{2}}{-sin\frac{a}{2}+\sqrt{3}cos\frac{a}{2}}=\frac{1}{\sqrt{3}}\)
d/Ta có: \(tana-tanb=\frac{sina}{cosa}-\frac{sinb}{cosb}=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
Áp dụng:
\(\lim\limits_{x\rightarrow a}\frac{\left(tanx-tana\right)\left(tanx+tana\right)}{\frac{sin\left(x-a\right)}{cos\left(x-a\right)}}=\lim\limits_{x\rightarrow a}\frac{sin\left(x-a\right)\left(tanx+tana\right).cos\left(x-a\right)}{sin\left(x-a\right).cosx.cosa}=\lim\limits_{x\rightarrow a}\frac{\left(tanx+tana\right).cos\left(x-a\right)}{cosx.cosa}\)
\(=\frac{2tana}{cos^2a}\)
Bài 1
a. \(\lim\limits_{x\rightarrow+\infty}\frac{1+2\sqrt{x}-x}{x+3}\) b. \(\lim\limits_{x\rightarrow+\infty}\frac{x^3+3x-1}{x^2\sqrt{x}+x}\) c. \(\lim\limits_{x\rightarrow-\infty}\frac{x+2\sqrt{1-x}}{1-x}\)
Bài 2: Tính các giới hạn sau biết \(\lim\limits_{x\rightarrow0}\frac{\sin x}{x}=1\)
a. \(\lim\limits_{x\rightarrow0}\frac{1-\cos x}{1-\cos3x}\) b. \(\lim\limits_{x\rightarrow0}\frac{\cot x-\sin x}{x^3}\) c. \(\lim\limits_{x\rightarrow\infty}\frac{x.\sin x}{2x^2}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)
Bài 2:
\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)
\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)
Mà \(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)
Mà \(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sin x-\sqrt{3}\cos5x}{3x}\)
\(=\dfrac{1}{3}\lim\limits_{x\rightarrow0}\dfrac{sinx}{x}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{1}{3}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\)
Xét:
\(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{\sqrt{3}}{0}=+\infty\)
\(\lim\limits_{x\rightarrow0^-}\dfrac{-\sqrt{3}cos5x}{-3x}=\dfrac{-\sqrt{3}}{0}=-\infty\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\) ko tồn tại nên giới hạn đã cho không tồn tại
tính \(\lim\limits_{x\rightarrow0}\dfrac{\sin x-\sqrt{3}\cos5x}{3x}\)
tính lim \(\dfrac{cosx}{x}\) và lim \(\dfrac{sin^2x}{x}\)khi x-> 0
\(\lim\limits_{x\rightarrow0}\dfrac{sin^2x}{x}=\lim\limits_{x\rightarrow0}\dfrac{sinx}{x}.sinx=1.0=0\)
Tính: \(\lim\limits_{x\rightarrow0}\dfrac{\tan x-\sin x}{\sin^3x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{sinx}{cosx}-sinx}{sin^3x}=\lim\limits_{x\rightarrow0}\dfrac{1-cosx}{cosx.sin^2x}=\lim\limits_{x\rightarrow0}\dfrac{2sin^2\dfrac{x}{2}}{4cosx.cos^2\dfrac{x}{2}sin^2\dfrac{x}{2}}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{1}{2cosx.cos^2\dfrac{x}{2}}=\dfrac{1}{2}\)
Tính \(\lim\limits_{x\rightarrow0}\dfrac{\sin x\sin2x...\sin nx}{x^n}\).
Tính \(\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sin x}-\dfrac{3}{\sin3x}\right)\dfrac{1}{x}\)
\(\lim\limits_{x\rightarrow\infty}\left(\sin\left(\sqrt{x+1}\right)-\sin\sqrt{x}\right)\)
\(=\lim\limits_{x\rightarrow\infty}2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)sin\left(\dfrac{\sqrt{x+1}-\sqrt{x}}{2}\right)\)
\(=\lim\limits_{x\rightarrow\infty}2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)sin\left(\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x}\right)}\right)\)
Ta có:
\(-2\le2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)\le2\) (hữu hạn)
\(\lim\limits_{x\rightarrow\infty}sin\left(\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x}\right)}\right)=sin\left(0\right)=0\)
\(\Rightarrow\lim\limits_{x\rightarrow\infty}\left(sin\sqrt{x+1}-sin\sqrt{x}\right)=0\)