Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyễn Đông Tuấn
28 tháng 4 2017 lúc 16:03

Tôi chẳng thể hiểu nổi

Lê Ngọc Lam
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2020 lúc 19:52

\(\lim\limits_{x\rightarrow a}\frac{sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}.cos\left(\frac{x+a}{2}\right)=1.cos\left(\frac{a+a}{2}\right)=cosa\)

b/ \(\lim\limits_{x\rightarrow\pi}\frac{sin\frac{\pi}{2}-sin\frac{x}{2}}{\pi-x}=\lim\limits_{x\rightarrow\pi}\frac{sin\left(\frac{\pi-x}{4}\right)}{\frac{\pi-x}{4}}.\frac{cos\left(\frac{\pi+x}{4}\right)}{2}=\frac{cos\left(\frac{\pi+\pi}{4}\right)}{2}=0\)

c/ Đặt \(x-\frac{\pi}{3}=a\Rightarrow x=a+\frac{\pi}{3}\)

\(\lim\limits_{a\rightarrow0}\frac{sina}{1-2cos\left(a+\frac{\pi}{3}\right)}=\lim\limits_{a\rightarrow0}\frac{sina}{1-cosa+\sqrt{3}sina}\)

\(=\lim\limits_{a\rightarrow0}\frac{2sin\frac{a}{2}cos\frac{a}{2}}{-2sin^2\frac{a}{2}+2\sqrt{3}sin\frac{a}{2}cos\frac{a}{2}}=\lim\limits_{a\rightarrow0}\frac{cos\frac{a}{2}}{-sin\frac{a}{2}+\sqrt{3}cos\frac{a}{2}}=\frac{1}{\sqrt{3}}\)

d/Ta có: \(tana-tanb=\frac{sina}{cosa}-\frac{sinb}{cosb}=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
Áp dụng:

\(\lim\limits_{x\rightarrow a}\frac{\left(tanx-tana\right)\left(tanx+tana\right)}{\frac{sin\left(x-a\right)}{cos\left(x-a\right)}}=\lim\limits_{x\rightarrow a}\frac{sin\left(x-a\right)\left(tanx+tana\right).cos\left(x-a\right)}{sin\left(x-a\right).cosx.cosa}=\lim\limits_{x\rightarrow a}\frac{\left(tanx+tana\right).cos\left(x-a\right)}{cosx.cosa}\)

\(=\frac{2tana}{cos^2a}\)

Trần Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2020 lúc 23:15

Bài 1:

\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)

Bài 2:

\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)

\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)

\(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)

\(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)

Khách vãng lai đã xóa
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2021 lúc 23:42

\(=\dfrac{1}{3}\lim\limits_{x\rightarrow0}\dfrac{sinx}{x}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{1}{3}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\)

Xét:

\(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{\sqrt{3}}{0}=+\infty\)

\(\lim\limits_{x\rightarrow0^-}\dfrac{-\sqrt{3}cos5x}{-3x}=\dfrac{-\sqrt{3}}{0}=-\infty\)

\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\) ko tồn tại nên giới hạn đã cho không tồn tại

xin gam
Xem chi tiết
super
Xem chi tiết
Khôi Bùi
11 tháng 5 2022 lúc 23:44

\(\lim\limits_{x\rightarrow0}\dfrac{sin^2x}{x}=\lim\limits_{x\rightarrow0}\dfrac{sinx}{x}.sinx=1.0=0\)

 

Tâm Cao
Xem chi tiết
Etermintrude💫
7 tháng 3 2021 lúc 21:30

undefined

Nguyễn Việt Lâm
7 tháng 3 2021 lúc 21:31

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{sinx}{cosx}-sinx}{sin^3x}=\lim\limits_{x\rightarrow0}\dfrac{1-cosx}{cosx.sin^2x}=\lim\limits_{x\rightarrow0}\dfrac{2sin^2\dfrac{x}{2}}{4cosx.cos^2\dfrac{x}{2}sin^2\dfrac{x}{2}}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{1}{2cosx.cos^2\dfrac{x}{2}}=\dfrac{1}{2}\)

Phú Phạm Minh
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết
kirigaya
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2021 lúc 16:38

\(=\lim\limits_{x\rightarrow\infty}2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)sin\left(\dfrac{\sqrt{x+1}-\sqrt{x}}{2}\right)\)

\(=\lim\limits_{x\rightarrow\infty}2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)sin\left(\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x}\right)}\right)\)

Ta có:

\(-2\le2cos\left(\dfrac{\sqrt{x+1}+\sqrt{x}}{2}\right)\le2\) (hữu hạn)

\(\lim\limits_{x\rightarrow\infty}sin\left(\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x}\right)}\right)=sin\left(0\right)=0\)

\(\Rightarrow\lim\limits_{x\rightarrow\infty}\left(sin\sqrt{x+1}-sin\sqrt{x}\right)=0\)