\(\lim\limits_{x\rightarrow0}\dfrac{\sin x-\sqrt{3}\cos5x}{3x}\)
Tính: \(\lim\limits_{x\rightarrow0}\dfrac{\tan x-\sin x}{\sin^3x}\)
\(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{x-\sqrt[3]{3x+2}}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{5+4x}-\sqrt[3]{7+6x}}{x^3+x^2-x-1}\)
1) \(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
2)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}\)
3)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\sqrt{5-x^2}}{x^2-1}\)
4)\(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-\sqrt[3]{8x+43}}{2x^2+3x-2}\)
5) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-\sqrt[m]{1+bx}}{x}\)
6)\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-1}{x}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\sqrt[3]{2x+1}}{x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{4x+5}-3}{\sqrt[3]{5x+3}-2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[4]{2x+3}+\sqrt[3]{2+3x}}{\sqrt{x+2}-1}\)
Tính các giới hạn sau:\(M=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{1-cos3x}\)
\(N=\lim\limits_{X\rightarrow0}\dfrac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{\sqrt{1+x}-1}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\sqrt{1+2x}-\sqrt[3]{1+3x}}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+3}-x}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+3x^2}-\sqrt{x^2-2x}\right)\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
Bài 1
a. \(\lim\limits_{x\rightarrow+\infty}\frac{1+2\sqrt{x}-x}{x+3}\) b. \(\lim\limits_{x\rightarrow+\infty}\frac{x^3+3x-1}{x^2\sqrt{x}+x}\) c. \(\lim\limits_{x\rightarrow-\infty}\frac{x+2\sqrt{1-x}}{1-x}\)
Bài 2: Tính các giới hạn sau biết \(\lim\limits_{x\rightarrow0}\frac{\sin x}{x}=1\)
a. \(\lim\limits_{x\rightarrow0}\frac{1-\cos x}{1-\cos3x}\) b. \(\lim\limits_{x\rightarrow0}\frac{\cot x-\sin x}{x^3}\) c. \(\lim\limits_{x\rightarrow\infty}\frac{x.\sin x}{2x^2}\)