Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zed
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2017 lúc 12:22

Đặt m =  x 2  – 2x

Ta có:  x 2 - 2 x 2  – 2 x 2  + 4x – 3 = 0

⇔  x 2 - 2 x 2  – 2( x 2  – 2x) – 3 = 0

⇔  m 2 – 2m – 3 = 0

Phương trình  m 2  – 2m – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  m 1  = -1,  m 2  = 3

Với m = -1 ta có:  x 2 – 2x = -1 ⇔  x 2  – 2x + 1 = 0

Phương trình  x 2  – 2x + 1 = 0 có hệ số a = 1, b = -2, c = 1 nên có dạng a + b + c = 0

Suy ra:  x 1 = x 2  = 1

Với m = 3 ta có:  x 2 – 2x = 3 ⇔  x 2 – 2x – 3 = 0

Phương trình  x 2  – 2x – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  x 1  = -1,  x 2 = 3

Vậy phương trình đã cho có 3 nghiệm:  x 1  = 1,  x 2  = -1,  x 3  = 3

Đinh Chi
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 0:26

\(\Leftrightarrow4\left|x-2\right|=\left(x-2\right)^2+4\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow4t=t^2+4\Rightarrow t^2-4t+4=0\)

\(\Rightarrow\left(t-2\right)^2=0\Rightarrow t=2\)

\(\Rightarrow\left|x-2\right|=2\Rightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Nguyễn Gia Bảo
Xem chi tiết
Nguyễn Gia Bảo
1 tháng 8 2018 lúc 13:02

Mình sẽ k cho bạn nào nhanh nhất nhé <3

Bui Huyen
23 tháng 8 2019 lúc 20:26

\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)

\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)

Nguyễn Gia Bảo
Xem chi tiết
võ duy phan
1 tháng 8 2018 lúc 14:16

Đặt m = 1 / x - 3         và n = 1/y - 4 
Khi đó ta có hệ m + n = 5/3
4 x x - 3 x n = 3/2 
....Bạn tự giải tiếp nhé 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2017 lúc 14:17

Vậy nghiệm của hệ phương trình là (x; y) = (1; 2).

Lê Song Phương
Xem chi tiết
IR IRAN(Islamic Republic...
10 tháng 9 2023 lúc 14:26

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

phan thị trâm
Xem chi tiết
Nguyễn Đức Việt
Xem chi tiết
Akai Haruma
29 tháng 4 2023 lúc 16:10

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

Akai Haruma
29 tháng 4 2023 lúc 16:47

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Nguyễn Đức Việt
29 tháng 4 2023 lúc 17:11

Nãy mình tìm được một cách giải tương tự cho câu 2.

PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm bằng 1.

\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)

\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)

\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)

\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)

Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)

Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))