Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huy Hoàng
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 13:52

Lời giải:

$A=1+2^1+2^2+2^3+...+2^{100}$
$A=1+(2^1+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})$

$=1+2(1+2)+2^3(1+2)+....+2^{99}(1+2)$

$=1+(1+2)(2+2^3+...+2^{99})=1+3(2+2^3+...+2^{99})$

$\Rightarrow A-1=3(2+2^3+...+2^{99})\vdots 3$

$\Rightarrow A$ chia 3 dư 1.

Lan Anh Nguyen
Xem chi tiết
Dang Tung
19 tháng 12 2023 lúc 18:05

\(A=2^0+2^1+2^2+2^3+2^4+2^5+...+2^{100}\\ =\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+...+\left(2^{98}+2^{99}\right)+2^{100}\\ =3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+...+2^{98}.\left(1+2\right)+2^{100}\\ =3+2^2.3+2^4.3+...+2^{98}.3+2^{100}\\ =3.\left(1+2^2+2^4+...+2^{98}\right)+2^{100}\)

Vì : \(3\left(1+2^2+2^4+...+2^{98}\right)⋮3\) và \(2^{100}\) chia 3 dư 1

Nên A chia 3 dư 1

Lan Anh Nguyen
19 tháng 12 2023 lúc 17:59

giúp vs ạ

 

Kiều Vũ Linh
19 tháng 12 2023 lúc 18:57

Số số hạng của A:

100 - 0 + 1 = 101 (số)

Do 101 : 2 = 50 (dư 1) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng và dư 1 số hạng như sau:

A = 2⁰ + (2¹ + 2²) + (2³ + 2⁴) + ... + (2⁹⁹ + 2¹⁰⁰)

= 1 + 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁹⁹.(1 + 2)

= 1 + 2.3 + 2³.3 + ... + 2⁹⁹.3

= 1 + 3.(2 + 2³ + ... + 2⁹⁹)

Do 3.(2 + 2³ + ... + 2⁹⁹) ⋮ 3

⇒ 1 + 3.(2 + 2³ + ... + 2⁹⁹) chia 3 dư 1

Vậy A chia 3 dư 1

Kẹo Nek
Xem chi tiết
Hoàng Diễm Quỳnh
3 tháng 11 2023 lúc 10:10

không bt nữa

Nguyễn Đình Phong
8 tháng 1 lúc 20:12

Lồn cặc

 

Trịnh Minh Hiếu
Xem chi tiết
Trần Thanh Ngọc
Xem chi tiết
Mèo Cheshire
Xem chi tiết
Phạm Minh Phúc
Xem chi tiết
Bùi Thùy Dương	Nữ
Xem chi tiết
Nguyễn Ngọc Khánh chi
2 tháng 12 2021 lúc 0:14

sorry chị em học lớp 5 ạ

Khách vãng lai đã xóa
Đào Trọng Tùng Lâm
2 tháng 12 2021 lúc 7:18

sorry chị em học lớp 9 ạ

Khách vãng lai đã xóa
Bùi Thùy Dương	Nữ
2 tháng 12 2021 lúc 12:19
Bài lớp 6 mà????
Khách vãng lai đã xóa
Ngô Khánh Ly
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 12 2021 lúc 9:04

\(A=2^0+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(A=1+3\left(2+2^3+2^5+...+2^{99}\right)\)

A chia 3 dư 1

Khách vãng lai đã xóa