Tìm STN n sao cho
a, n.n+4chia het cho n+2
b, 13.nchia het cho n-1
Cho N =dcba .Chung minh rang :
a) Nchia het cho 4 <=>a+2b chia het cho 4
b)N chia het cho 8<=> a+2b+4c chia het cho 8
a/
\(N=\overline{dcab}\) chia hết cho 4 \(\Rightarrow\overline{ba}\) chai hết cho 4
\(\overline{ba}=10xb+a=8xb+\left(a+2b\right)\) chia hết cho 4
Mà 8xb chia hết cho 4 => a+2b chia hết cho 4
b/
\(N=\overline{dcba}\) chia hết cho 8 \(\Rightarrow\overline{cba}\) chia hết cho 8
\(\overline{cba}=100xc+10xb+a=96xc+8xb+\left(a+2xb+4xc\right)\) chia hết cho 8
Mà 96xc và 8xb chia hết cho 8 => a+2xb+4xc chia hết cho 8
Tìm số tự nhiên n sao cho :
a, n+3 chia het cho n+1
b,2n+13 chia hêt cho n+2
c, 3n-5 chia het cho n-1
d,(n.n)+2n+15 chia hêt cho n+1
a,n=0;1
b,n=1;7
c,n=2;3
d;n=0;1;6
chia 1 stn cho 64 va 67 duoc cung 1 thuong so du lan luot la 38; 14. tim so do
tim stn n de n.n+3 chia het cho n+2
CÂU 2:
n.n + 3 chia hết cho n+2
=>n.n+2n-2n+3 chia hết cho n+2
=>n(n+2)-2n+3 chia hếtcho n+2
Do n(n+2) chia hết cho n+2 suy ra 2n+3 chia hết cho n+2
=>2n+4-1 chia hết cho n+2
=>2(n+2)- 1 chia hết cho n+2
do 2(n+2) chia hết cho n+2 suy ra 1 chia hết cho n+2 .
n thuộc rỗng . Nếu n thuộc Z thì mới tìm được n
Tim STN n sao cho n+13 chia het cho n+3
tim n thuoc Z
a)n^2+4chia het cho n-1
b)3n-1 chia het cho 2-n
c)n-7 chia het cho 2n+3
phần c
\(n-7⋮2n+3\)
\(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
\(2n-4-2n-3⋮2n+3\)
\(-7⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng xét :
2n+3 | -1 | 1 | -7 | 7 |
2n | -4 | -2 | -10 | 4 |
n | -1 | 1 | -5 | 2 |
chung minh A=111...1 co n chu so 1 ,chia het cho 41 neu nchia het cho 5
cho so A = 111...1 co n chu so 1 . chung minh A chia het cho 41 neu nchia het cho 5
Tim so tu nhien n sao cho:
a/ 5:n+1 b/ 15:n+1 c/ n+3 : n+1 d/ 4n+3:2n+1
Biet rang 7a+2b chia het cho 13 ( a,b thuoc N ). Chung to rang 10a+b cung chia het cho 13 ?
a) Ta có:
\(5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)
Vậy \(n\in\left\{0;4\right\}\)
b) Ta có:
\(15⋮n+1\)
\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)
Vậy \(n\in\left\{0;2;4;14\right\}\)
c) Ta có:
\(n+3⋮n+1\)
\(\Rightarrow\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{0;1\right\}\)
d) Ta có:
\(4n+3⋮2n+1\)
\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)
\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow2n+1=1\)
\(\Rightarrow n=0\)
Vậy \(n=0\)
STN n co 3 chu so lon nhat sao cho 2 x n + 7 chia het cho 13 la ?