Chứng minh rằng với mọi số tự nhiên n thì ta luôn có 5n+2 - 2n+3 + 5n - 2n+2 - 2n chia hết cho 13
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Bài 1.Tìm số tự nhiên n sao cho: 2n + 7 chia hết cho n + 2
Bài 2.Chứng minh rằng:
a/ Với mọi số tự nhiên n thì (n+3)(n+10) chia hết cho 2
b/ Với mọi số tự nhien n thì (n+3)(n+6) chia hết cho 2
c/ Với mọi số tự nhiên n thì (5n+7)(4n+6) chia hết cho 2
1,Tìm n ∈N sao cho 2n+7 chia hết cho 31
Chứng tỏ rằng với mọi số tự nhiên n thì :n2+5n+5 ko chia hết cho 25
1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)
\(\Leftrightarrow2n+7\in1;31\)
\(\Rightarrow n\in-3;12\)
Mà n là số tự nhiên nên n=12
Vậy n=12.
2,Ta có:n2+5n+5=n(n+5)+5
n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.
Suy ra n(n+5)+5 tận cùng là 1;5;9.
Mà số chia hết cho 25 tận cùng là 25,50,75,00.
Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.
Vậy n2+5n+5 không chia hết cho 25.
chứng minh rằng: A=5n(5n+1)−6n(3n+2n)A=5n(5n+1)−6n(3n+2n) chia hết cho 91 với mọi số nguyên dương n
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta luôn có: 2 n + 1 > 2 n + 3 (*)
* Với n = 2 ta có 2 2 + 1 > 2.2 + 3 ⇔ 8 > 7 (đúng).
Vậy (*) đúng với n= 2 .
* Giả sử với n = k , k ≥ 2 thì (*) đúng, có nghĩa ta có: 2 k + 1 > 2 k + 3 (1).
* Ta phải chứng minh (*) đúng với n = k + 1, có nghĩa ta phải chứng minh:
2 k + 2 > 2 ( k + 1 ) + 3
Thật vậy, nhân hai vế của (1) với 2 ta được:
2.2 k + 1 > 2 2 k + 3 ⇔ 2 k + 2 > 4 k + 6 > 2 k + 5 .
( vì 4k + 6 > 4k + 5 > 2k + 5 )
Hay 2 k + 2 > 2 ( k + 1 ) + 3
Vậy (*) đúng với n = k + 1 .
Do đó theo nguyên lí quy nạp, (*) đúng với mọi số nguyên dương ≥ 2
chứng minh rằng:
(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2) +4 chia hết cho 5, với mọi n
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
Chứng minh với mọi số tự nhiên n thì :
a)10^n+8 chia hết cho 9
b)(n+10)n+15 chia hết cho 2
c)(3^n+5)*5n+2 chia hết cho 2
d)(2n+3)*4n+1 không chia hết cho 2
Bài 1: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 2: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Thanks,tui cũng đang mắc ở bài 2