Cho hệ phương trình x − y = 3 3 x − 4 y = 2 có nghiệm (x, y). Tích x 2 . y là?
A. 7000
B. 490
C. 70
D. 700
Cho hệ phương trình 2 x + 3 y = − 2 3 x − 2 y = − 3 . Nghiệm của hệ phương trình là (x; y), tính x + y
A. x + y = −1
B. x + y = 1
C. x + y = 0
D. x + y = 2
2 x + 3 y = − 2 3 x − 2 y = − 3 ⇔ 4 x + 6 y = − 4 9 x − 6 y = − 9 ⇔ 13 x = − 13 2 x + 3 y = − 2 ⇔ x = − 1 y = 0
Vậy hệ đã cho có nghiệm duy nhất (x; y) = (−1; 0)
x – y = −1 – 0 = −1
Đáp án: A
Cho hệ phương trình:
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\) ( m là tham số).
a, Giải hệ phương trình trên khi m = 3.
b, Tìm m để hệ phương trình trên có nghiệm (x0; y0) và x0, y0 là những số dương.
Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)
\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)
a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành
\(t^2-5t+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)
Vậy ...
b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=4\\nx+y=-3\end{matrix}\right.\)
a.Tìm m,n để hệ phương trình có nghiệm là (x ; y) = (-2 ; 3)
b.Tìm m,n để hệ phương trình có vô số nghiệm
\(a,\text{Thay }x=-2;y=3\\ HPT\Leftrightarrow\left\{{}\begin{matrix}3m-2=4\\3-2n=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=3\end{matrix}\right.\\ b,HPT\Leftrightarrow\left\{{}\begin{matrix}x=4-my\\n\left(4-my\right)+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-my\\4n-mny+y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=4-my\\y\left(mn-1\right)=4n+3\end{matrix}\right.\)
HPT có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}mn-1=0\\4n+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)
Cho hệ phương trình
\(\left\{{}\begin{matrix}x+my=4\\nx+y=-3\end{matrix}\right.\)
a/ Tìm m, n để hệ phương trình có nghiệm : (x;y) = (-2 ;3)
b/ Tìm m , n để hệ phương trình có vô số nghiệm
a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)
b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy...
Cho hệ phương trình (a+1)x-y=3 và ax+y=a ( a là tham số) .Tìm a để hệ phương trình có nghiệm duy nhất (x;y) sao cho x+y>0
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Cho hệ phương trình 5 x + 2 y = - 3 3 x + y = - 2
Giả sử (x;y) là nghiệm của hệ phương trình, khi đó - x . y 3 bằng
A. -1.
B. 1
C. 2
D. -2
Cho hệ phương trình x + y + 1 + 1 = 4 x + y 2 + 3 . x + y 2 x - y = 3 2 .Giả sử (x;y) là cặp nghiệm của hệ phương trình. Khi đó, A = 9x2 – 12y + 1 bằng
A. 3
B. 9
C. 4
D. 7
Cho hệ phương trình {3X - 2y = 1 {mx + 3 y = 4
A)Giải hệ phương trình khi m = 1
B) tìm m để hệ phương trình có nghiệm x = -1/3 y = -1
\(\hept{\begin{cases}3x-2y=1\\mx+3y=4\end{cases}}\)
\(\hept{\begin{cases}3x=1+2y\\mx+3y=4\end{cases}}\)
\(\hept{\begin{cases}x=1+\frac{2y}{3}\\mx+3y=4\end{cases}}\)
a, Khi thay m = 1 thì biểu thức mx + 3y ta đc
\(x+3y=4\)
Hệ phương trình trở thành : \(\hept{\begin{cases}x=1+\frac{2y}{3}\\x+3y=4\end{cases}}\)
Ta thay x vào biểu thức x + 3y = 4 ta đc
\(1+\frac{2y}{3}+3y=4\)
\(1+\frac{2y}{3}+\frac{9y}{3}-4=0\)
\(-3+\frac{11y}{3}=0\)
\(\frac{11y}{3}=3\Leftrightarrow11y=9\Leftrightarrow y=\frac{9}{11}\)
Ta thay y = 9/11 vào biểu thức x + 3y ta đc
\(x+3.\frac{9}{11}=4\)
\(x+\frac{27}{11}=4\)
\(x=\frac{17}{11}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{17}{11};\frac{9}{11}\right\}\)
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1