giá trị nhỏ nhất của x^2+y^2-x+6y+15
tìm giá trị lớn nhất của đa thức 4x-x^2-12
tìm giá trị nhỏ nhất x^2+y^2-x+6y+15
\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)
=> GTLN của đa thức là 8
<=> x-2 = 0
<=> x = 2
\(x^2+y^2-x+6y+15\)
\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
=> GTNN của đa thức là 23/4
<=> x-1/2=0 và y+3=0
<=> x=1/2 và y=-3
Giá trị nhỏ nhất của x2 + y2 - x +6y - 15 là ?
Tìm giá trị nhỏ nhất của x2 +y2 -x +6y +15
tìm giá trị nhỏ nhất của biểu thức M=x^2+y^2-x+6y+10
M = x ^2 - x + 1/4 + y ^2 + 6y + 9 + 3/4
M =( x - 1/4 ) ^2 + ( y + 3 ) ^2 + 3/4
M > = 3/4 với mọi x; y
Dấu bằng <=> x = 1/4 và y = -3
Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3
M=x^2-x+1/4+y^2+6y+9+3/4
M=(x-1/4)^2+(y+3)^2+3/4
M >= 3/4 với mọi x; y
Dấu bằng <=> x = 1/4 và y = -3
Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3
tìm giá trị nhỏ nhất x^2+y^2-x+6y+10
x^2+y^2-x+6y+10=x(x-1)+y(y+6)+10
=>CTNN của biểu thức=10 <=>x=0;y=0
Gọi bt là A, ta có:
\(A=x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2+2.\frac{1}{2}.x+\frac{1}{4}\right)\)
Ta xét: \(\left(x-\frac{1}{2}\right)^2\ge0\) (bình phương lên)
\(\left(y-3\right)^2\ge0\) (bình phương lên)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\("="\Leftrightarrow x=\frac{1}{2};x=3\)
\(x^2+y^2-x+6y+10\)
\(=\left[x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]+\left[y^2+2.3y+3^2\right]+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Ta có: \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall x\end{cases}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
Vậy GTNN của \(x^2+y^2-x+6y+10\)là \(\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Tham khảo nhé~
Tìm giá trị nhỏ nhất của biểu thức : D = x^2 + 4y^2 - 2xy -6y-10(x-y) +32
\(D=x^2+4y^2-2xy-6y-10x+10y+32\)
\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)
\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)
\(=\left(x-y-5\right)^2+3y^2-6y+7\)
\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)
\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)
Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow D\ge4\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)
Vậy : min \(D=4\) tại \(x=6,y=1\)
Tìm giá trị nhỏ nhất của C= x^2+y^ -4x-6y+30
Ta có C = x2 + y2 - 4x - 6y + 30
= (x2 - 4x + 4) + (y2 - 6y + 9) + 17
= (x - 2)2 + (y - 3)2 + 17 \(\ge17\)
=> Min C = 17
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy Min C = 17 <=> x = 2 ; y = 3
Tìm giá trị nhỏ nhất của C= x^2+y^2 -4x-6y+30
Cảm ơn Xyz ( cỏ 4 lá nhé =))) trả lời tận 2 lần
Tìm giá trị nhỏ nhất của biểu thức :
A=x^2+y^2+xy-6x-6y+2
\(A=x^2+y^2+xy-6x-6y+2\)
\(\Rightarrow4A=4x^2+4y^2+4xy-24x-24y+8\)
\(=\left(4x^2+4xy+y^2\right)+3y^2-24x-24y+8\)
\(=\left[\left(2x+y\right)^2-12\left(2x+y\right)+36\right]+3y^2-12y-28\)
\(=\left(2x+y-6\right)^2+3\left(y^2-4y+4\right)-40\)
\(=\left(2x+y-6\right)^2+3\left(y-2\right)^2-40\ge-40\)
\(\Rightarrow4A\ge-40\)
\(\Rightarrow A\ge-10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y-6=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=6-y\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
Vậy \(A_{min}=-10\Leftrightarrow x=y=2\)
P/S: cách giải trên gọi là cách chung riêng !
Tìm giá trị nhỏ nhất m=x^2+y^2-x+6y+10