Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a = 3 và đồ thị của hàm số đi qua điểm A(2; 2)
Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a) a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5.
b) a = 3 và đồ thị của hàm số đi qua điểm A(2; 2)
c) Đồ thị của hàm số song song với đường thẳng y = √3 x và đi qua điểm B(1; √3 + 5 ).
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
Bài 3: Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a) Đồ thị của hàm số song song với đường thẳng y = 3x + 1 và đi qua A ( 2; 5)
b) Đồ thị hàm số đi qua A ( -1; 2) và B ( 2; -3).
a: Vì (d) song song với y=3x+1 nên a=1
Vậy: (d): y=x+b
Thay x=2 và y=5 vào (d), ta được:
b+2=5
hay b=3
b: Theo đề,ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=5\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=a+2=\dfrac{-5}{3}+2=\dfrac{1}{3}\end{matrix}\right.\)
xác định hàm số bậc nhất y=ax+b trong mỗi trường hợp sau:
a/ a=2 và đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5
b/a=3 và đồ thị của hàm số qua điểm A(2;2)
c/Đồ thị hàm số song song với đường thẳng y=căn 3 và đi qua điểm B(1;căn 3+5)
Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
Đồ thị của hàm số song song với đường thẳng y = √3 x và đi qua điểm B(1; √3 + 5 ).
Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
1) xác định đồ thị hàm số bậc nhất \(y=ax+b\) trong mỗi trường hợp sau:
a) đồ thị hàm số đi qua A(-1; 2), B(2; -3)
b) đồ thị hàm số có hệ số góc là 2 và cắt trục tung tại điểm có tung độ là 2
c) đồ thị hàm số tạo với trục hoành 1 góc \(60^0\) và đi qua điểm B(1; -3)
giúp mk vs ah mk cần gấp
Xác định hàm số bậc nhất y=ax+b trong mỗi trường hợp sau:
a) Đồ thị hàm số có hệ số góc là 2 và cắt trục tung tại điểm có tung độ bằng 2
b) Đồ thị hàm số tạo với trục hoành một góc là 60 độ và đi qua điểm B(1;-3)
a: Vì hệ số góc là 2 nên a=2
Thay x=0 và y=2 vào y=2x+b, ta được:
b+0=2
hay b=2
Xác định hàm số bậc nhất y=ax+b trong các trường hợp sau;
a,a=2 và dồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5
b,a=3 và đồ thị hàm số đi qua điểm A(2;2)
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
Xác định hàm số bậc nhất \(y=ax+b\) trong mỗi trường hợp sau :
a) a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5
b) a = 3 và đồ thị của hàm số đi qua điểm A( 2; 2)
c) Đồ thị của hàm số song song với đường thẳng \(y=\sqrt{3}x\) và đi qua điểm \(B\left(1;\sqrt{3}+5\right)\)
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5.
Bài giải:
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5.
xác định hàm số bậc nhất y=ax+b ( a khác 0) trong các trường hợp sau:
a, đồ thị của hàm số là đường thẳng đi qua gốc tọa độ và có hệ số gốc bằng -2
b, đồ thị của hàm số là đường thẳng cắt trục tung tại điểm có tung độ bằng -3 và đi qua điểm B(-2;1)
a) Đồ thị hàm số đi qua gốc tọa độ
=> có dạng y = ax
=> b = 0
Đồ thị hàm số có hệ số góc bằng -2
=> y = -2x
b) ĐTHS là đường thẳng cắt trục tung tại điểm có tung độ bằng -3
nên ta có: -3 = a.0 + b => b = -3
ĐTHS là đường thẳng đi qua điểm B(-2; 1)
nên ta có: 1 = a.(-2) + b <=> 1 = -2a - 3 <=> 2a = -4 <=> a = -2
Vậy y = -2a - 3