Biện luận theo tham số m số nghiệm của phương trình: x 4 - 6 x 2 + 3 = m .
+ Biện luận theo tham số m số nghiệm của phương trình x^2 - 4|x| + m = 0.
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
Cho phương trình (m+2)x2−2(m−1)x+3−m=0 (1); với m là tham số thực
1) Giải và biện luận phương trình đã cho theo tham số m
2) Tìm m để phương (1) có hai nghiệm thỏa mãn tổng hai nghiệm bằng tích hai nghiệm.
1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)
\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)
\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)
\(=4m^2-8m+4+4m^2-4m-24\)
\(=-12m-20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-12m-20>0\)
\(\Leftrightarrow-12m>20\)
hay \(m< \dfrac{-5}{3}\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow-12m-20=0\)
\(\Leftrightarrow-12m=20\)
hay \(m=\dfrac{-5}{3}\)
Để phương trình vô nghiệm thì Δ<0
\(\Leftrightarrow-12m-20< 0\)
\(\Leftrightarrow-12m< 20\)
hay \(m>\dfrac{-5}{3}\)
2: ĐKXĐ: \(m\ne-2\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)
Ta có: \(x_1+x_2=x_1x_2\)
\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)
Suy ra: 2m-2=3-m
\(\Leftrightarrow2m+m=3+2\)
\(\Leftrightarrow3m=5\)
hay \(m=\dfrac{5}{3}\)(thỏa ĐK)
Cho phương trình : m2x+3=9x+m (1)
a, Giải phương trình khi m=3
b, Tìm m để phương trình nhận x=1/6 làm nghiệm
c, Giải và biện luận số nghiệm của phương trình (1) theo tham số m.
d, Khi m>3, tìm min: A= 16x+4m+14
nhờ các bạn giải giúp mk câu d là được
.cho phương trình ẩn x:ax2+(b-m)x+c=0 .Viết chương trình :
a) giải phương trình với hệ số a=0.
b)biện luận nghiệm của phương trình theo tham số m.
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0
Biện luận số nghiệm theo m của phương trình:
x^2-|x|+m=0
Giải và biện luận phương trình sau theo tham số m: m(x – 4) = 5x – 2.
m(x – 4) = 5x – 2 ⇔(m - 5)x = 4m - 2
Nếu m - 5 ≠ 0 ⇔ m ≠ 5 thì phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Nếu m – 5 = 0 ⇔ m = 5, phương trình trở thành:
0.x = 18 ⇒ phương trình vô nghiệm
Vậy với m ≠ 5 phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Với m = 5 phương trình vô nghiệm.