Cho bất phương trình 2 m 2 x + 10 − mx < 4 . Tìm m để bất phương trình có nghiệm x = − 3 .
Cho bất phương trình x − 1 3 + mx ≤ m − 9 . Tìm x để bất phương trình có nghiệm x = 10 .
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
Bài 1: Tìm m sao cho hệ bất phương trình \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x-2\ge0\end{matrix}\right.\)có nghiệm.
Bài 2: Tìm tất cả giá trị thực của tham số m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2+10x+16\le0\\mx\ge3x+1\end{matrix}\right.\)vô nghiệm.
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
mx²+2(m-1)x+4 ≥0 tìm m để bất phương trình vô nghiệm
mx²+2(m-1)x+4 ≥0
bpt trên vô nghiệm <=>mx²+2(m-1)x+4 <0
a=m\(\ne0\)
\(\Delta'=\left(m-1\right)^2-m.4\)
\(=m^2-2m+1-4m\)
\(=m^2-6m+1\)
\(=\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)\)
bpt vô nghiệm <=>\(\left\{{}\begin{matrix}a< 0\\\Delta'< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m< 0\\\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m< 0\\3-2\sqrt{2}< m< 3+2\sqrt{2}\end{matrix}\right.\)
=> không có m để bất phương trình vô nghiệm
Tìm m để x = 2 là nghiệm bất phương trình: mx + 2 < x + 3 + m
A. m = 2
B. m < 3
C. m > 1
D. m < - 3
Do x = 2 là nghiệm của bất phương trình đã cho nên:
⇔ 2m + 2 < 2 + 3 + m
⇔ 2m – m < 2 + 3- 2
⇔ m < 3
Chọn đáp án B
Tìm m để hai bất phương trình sau có cùng tập nghiệm:
\(x^2\left(x-5\right)>4-5x\) và \(mx-5>x-2m\)
Tìm m để bất phương trình \(\dfrac{x+1}{mx^2-4x+m-3}< 1\) có tập nghiệm là R
\(\Leftrightarrow\dfrac{mx^2-5x+m-4}{mx^2-4x+m-3}>0\)
BPT đã cho có tập nghiệm là R khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta_1=25-4m\left(m-4\right)< 0\\\Delta'_2=4-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4m^2+16m+25< 0\\-m^2+3m+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< \dfrac{4-\sqrt{41}}{2}\\m>\dfrac{4+\sqrt{41}}{2}\end{matrix}\right.\)
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Cho 2 bất phương trình: 3mx - 2m > x + 1 (1)
m - 2x < 0 (2)
Tìm m để 2 bất phương trình có chung 1 tập nghiệm