Cho tam giác ABC (AB < AC), đường phân giác AD của B A C ^ (với D ∈ B C ). Từ trung điểm M của BC, kẻ một đường thẳng song song với AD, cắt AC tại F và cắt tia đối của tia AB tại E. Chứng minh BE = CF
cho tam giác abc vuông tại a có ab=3cm ac=4cm a, Chứng minh tam giác HBA đồng dạng với tam giác ABC b,Tính độ dài các đoạn thẳng BC , AH c, Gọi AD là đường phân giác của ˆ B A C ( D thuộc BC ) ; DE là đường phân giác của ˆ A D B ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng A E E B . D E D C . E C E A = 1
cho tam giác ABC vuông tại a có AB=3cm, AC=4cm. Đường phân giác AD. Đường vuông góc với DC tại D cắt AC ở E.
a, CMR: tam giác ABC đồng dạng với tam giác DEC.
b, Tính: BC, BD
c, Tính AD
cho tam giác abc vuông tại a đường cao ah kẻ đường phân giác ad của tam giác CHA và đường phân giác bk của tam giác ABC(d thuoc bc ;k thuộc ac) bk cắt lần lượt ah và ad tại e và f cmr a, tam giác AHB đồng dạng với tam giác CHA b, tam gic AEF đồng dạng với tam giác BEH c, KD//AH d, eh/ab=kd/bc
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm .Kẻ đường phân giác BD của góc ABC (D thuộc AC ) a)Tính BC, AD, DC b)Trên BC lấy điểm E sao cho CE= 4cm. Chứng minh tam giác CED đồng dạng với tam giác CAB c)Chứng minh ED= AD
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
bài 1/ cho tam giác ABC có góc B=C.Tia phân giác của góc B cắt AC ở D.Tia phân giác của góc C cắt AB ở E.So sánh BD và CE.
bài 2/Cho tam giác ABC vuông tại A có AB=AC. Lấy D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD=AE. Đường thẳng đi qua D vuông góc với DE cắt CA ở K. Chứng minh: AK=AC.
bài 3/cho tam giác ABC có góc A=90 độ;AB=AC.Lấy điểm D thuộc AB,điểm E thuộc AC sao cho AD=AE.Đường thẳng qua D và vuông góc với BE cắt đường CA ở K.CMR:AK=AC.
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
Cho tam giác abc vuông tại a có ab<ac, đường cao ah. Kẻ ad là tia phân giác của goác HAC(D thuộc BC). Kẻ DK vuông góc với AC tại K.CMR:
a)tam giác dah = tam gác dak
b)ad là đường trung trực của hk
c)tam giác abd cân tại b
d)ab+ac<bc+ah
cho tam giác ABC vuông tại B, biết AB=8, BC=6, đường phân giác của góc A cắt BC tại D. từ D kẻ đường vuông góc với AC, cắt AC,AB lần lượt tại H và K
a, tính AC ?
b, so sánh AD và AC ?
Chứng minh :
c, AD vuông góc với KC ?
d, tam giác ABD = tam giác AHD ?
Cho tam giác ABC vuông tại A; AB=6cm; AC=8cm. BM là đường phân giác của góc B. Kẻ MK vuông góc với BC tại K
a, Tính BC
b, Chứng minh: AM=KM
c, Kẻ AD vuông góc với BC tại D. Chứng minh: AK là phân giác của góc DAC
d, Chứng minh: AB+AC < BC+AD
AI GIÚP MÌNH CÂU NÀY VỚI Ạ, MÌNH CẦN GẮP LẮM
CÂU 1. CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, HD LÀ PHÂN GIÁC CỦA GÓC AHC. a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HAC
b) CHỨNG MINH AB × DC = AD × AC
CÂU 2. CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN, ĐƯỜNG CAO AH. VẼ HD VUÔNG GÓC VỚI AB TẠI D, HE VUÔNG GÓC VỚI AC TẠI E
a) CHỨNG MINH: TAM GIÁC AHB ĐỒNG DẠNG TAM GIÁC ADH, AH × AH = AD × AB
b) CHỨNG MINH: AD × AB = AE × AC
c) CHỨNG MINH TAM GIÁC ADE ĐỒNG DẠNG VỚI TG ACB
d) ĐƯỜNG PHÂN GIÁC GÓC AHB CẮT AB TẠI M. CM: MB = 2/5 AB VÀ TÍNH BD/DA