Cho A ={ x ∈ R | | m x − 3 | = m x − 3 } , B = { x ∈ R | x 2 − 4 = 0 }. Tìm m để B∖A=B
A. − 3 2 ≤ m ≤ 3 2
B. 0 < m < 3 2 hoặc − 3 2 < m < 0
C. − 3 2 < m < 3 2
D. m ≥ − 3 2
1,với giá trị nào của a thì bpt \(ax^2-x+a\ge0,\forall x\in R\)
2,cho f(x)=\(-2x^2+\left(m+2\right)x+m-4\) tìm m để f(x) âm với mọi x
3,tìm m để x2-2(2m-3)x+4m-3>0, với mọi x thuộc R
4, cho f(x)=mx2-2x-1. Xác định m để f(x)<0 với mọi x thuôc R
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
Cho R(x) = 2x 2 + 3x - 1; M(x) = x 2 - x 3 thì R(x) - M(x)=
A.-3x 3 + x 2 + 3x – 1 B. -3x 3 - x 2 + 3x – 1
B. 3x 3 - x 2 + 3x – 1 D. x 3 + x 2 + 3x + 1
R(x) = 2x2 + 3x - 1
- M(x) = -x3 + x2
x3 + x2 + 3x - 1
Vậy R(x) - M(x) = x3 + x2 + 3x - 1
Cho A = { x thuộc R || mx-3 | = mx-3 }
B = { x thuộc R | x^2 - 4 = 0 } tìm m để B \ A = B
B={2;-2}
mx-3=mx-3
=>0mx=0
=>\(x\in R\)
=>A=R
B\A=B khi B giao A bằng rỗng
=>m<>2 và m<>-2
cho A={x\(\in\)R| |mx-3|=mx-3}, B={x\(\in\)R| \(x^2\)-4=0}. Tìm m để B\A=B
Trước tiên, ta xác định tập hợp B\A: B\A là tập hợp các phần tử thuộc tập B mà không thuộc tập A. Tập A chứa các giá trị x thỏa mãn |mx-3|=mx-3. Điều này có nghĩa là ta cần tìm các giá trị x mà khi thay vào phương trình trên, phương trình vẫn đúng.
Tiếp theo, ta xác định tập hợp B: B là tập hợp các giá trị x thỏa mãn x^2-2x-4=0. Để giải phương trình này, ta có thể sử dụng công thức nghiệm của phương trình bậc 2, hoặc sử dụng định lý Viết.
Giải phương trình x^2-2x-4=0 bằng cách sử dụng công thức nghiệm của phương trình bậc 2, ta có: x = (2 ± √(2^2 - 41(-4))) / (2*1) = (2 ± √(4 + 16)) / 2 = (2 ± √20) / 2 = 1 ± √5
Vậy tập hợp B là B = {1 + √5, 1 - √5}.
Cuối cùng, ta xác định tập hợp B\A: B\A là tập hợp các phần tử thuộc tập B mà không thuộc tập A. Điều này có nghĩa là ta cần loại bỏ các giá trị x thuộc tập A khỏi tập B.
Từ phương trình |mx-3|=mx-3, ta có hai trường hợp để xác định tập A:
Khi mx-3 > 0, ta có mx-3 = mx-3, điều này đúng với mọi giá trị x.Khi mx-3 < 0, ta có -(mx-3) = mx-3, điều này đúng khi mx > 3.Với mọi giá trị x thỏa mãn mx > 3, ta có x thuộc tập A.
Vậy tập hợp B\A = B - A = {1 + √5, 1 - √5} - {x | mx > 3}.
Để tìm m sao cho B\A = B, ta cần tìm giá trị m mà tập hợp B\A bằng tập hợp B. Tức là, ta cần giải phương trình sau: {1 + √5, 1 - √5} - {x | mx > 3} = {1 + √5, 1 - √5}.
Điều này xảy ra khi và chỉ khi tập hợp {x | mx > 3} không chứa bất kỳ giá trị nào từ tập hợp {1 + √5, 1 - √5}. Nghĩa là không có giá trị x thỏa mãn mx > 3 và x thuộc {1 + √5, 1 - √5}.
Vì vậy, để B\A = B, ta cần tìm giá trị m sao cho không có giá trị x thuộc {1 + √5, 1 - √5} thỏa mãn mx > 3.
Tuy nhiên, không có giá trị m nào thỏa mãn yêu cầu trên vì tập hợp {1 + √5, 1 - √5} chứa cả hai giá trị x lớn hơn 3 và nhỏ hơn 3.
Vậy không tồn tại giá trị m để B\A = B.
Cho hai đa thức $P(x)=x^4-5 x^3+4 x-5$ và $Q(x)=-x^4+3 x^2+2 x+1$.
a) Hãy tìm tổng $P(x)+Q(x)$.
b) Tìm đa thức $R(x)$ sao cho $P(x)=R(x)+Q(x)$.
a. \(x^4-5x^3+4x-5-x^4+3x^2+2x+1\)
\(=-5x^3+3x^2+6x-4\)
b. \(R\left(x\right)=x^4-5x^3+4x-5-\left(-x^4+3x^2+2x+1\right)\)
\(=x^4-5x^3+4x-5+x^4-3x^2-2x-1\)
\(=2x^4-5x^3-3x^2+2x-6\)
a, P(x) + Q (x)=(x4- 5x3 +4x -5) + ( -x4 + 3X2 +2x + 1)
= x4 -5x3 + 4x - 5 - x4 +3x2 + 2x + 1
= ( x4 - x4) + ( 4x + 2x) + ( -5 +1 ) - 5x3
= 0 + 6x + 4 -5x3
= -5x3 + 6x + 4
b, Do P(x) = R(x) + Q(x )
nên R(x )=P(x) - Q(x)
P(x) - Q(x) = (x4 - 5x3 + 4x - 5) - ( -x4 + 3x2 +2x + 1)
= x4 - 5x3 + 4x -5 + x4 - 3x2 - 2x -1
= ( x4 + x4) + ( 4x -2x) + (-5 - 1) -5x3
=2x4 + 2x -6 - 5x3
= 2x4 -5x3 + 2x - 6
Vậy đa thức R(x) là 2x4 - 5x3 +2x - 6
1.cho biểu thức: P=2√a/√a+3+√a+1/√a-3+3+7√a/9-a
a. Tìm ĐKXĐ và rút gọn
b. Tìm a để P<1
2. Cho biểu thức: A=(√x-1/√x+1-√x+1/√x-1)(1/2√x-√x/2)^2
a. Tìm đk và rút gọn
b. Tìm x để A/√x>2
Bài 2:
a: ĐKXĐ: x>0; x<>1
\(A=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\cdot\left(\dfrac{1-\sqrt{x}}{2\sqrt{x}}\right)^2\)
\(=\dfrac{-4\sqrt{x}}{x-1}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{4x}\)
\(=\dfrac{-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
b: Để \(\dfrac{A}{\sqrt{x}}>2\) thì \(\dfrac{-\sqrt{x}+1}{x\left(\sqrt{x}+1\right)}-2>0\)
\(\Leftrightarrow-\sqrt{x}+1-2x\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow-2x\sqrt{x}-2x-\sqrt{x}+1>0\)
Đến đây thì xin lỗi bạn, mình bí rồi
cho các tập hợp sau a ={ x thuộc r : x < = -3 hoặc >= -4 } B = { x thuộc R :x <2 hoặc x >5 } 1 tìm A HỢP b A/B 2 TÌM B/ A giao N
\(A=(-\infty;-3]\cup[-4;+\infty)\)
B=(-vô cực,2) giao (5;+vô cực)
1: A hợp B=(-vô cực,2) giao [-4;+vô cực]=R
A\B=[-4;5]
2: (B\A) giao N=(-3;2) giao N=[2;+vô cực)
a: A=3x-1/2+|x-5|+|x-4|
Trường hợp 1: x<4
A=3x-1/2+5-x+4-x=x+17/2
TRường hợp 2: 4<=x<5
A=3x-1/2+5-x+x-4=3x+1/2
TRường hợp 3: x>=5
A=3x-1/2+x-5+x-4=5x-19/2
b: Trường hợp 1: x<4
=>x+17/2=2
hay x=-13/2(nhận)
Trường hợp 2: 4<=x<5
=>3x+1/2=2
=>3x=3/2
hay x=1/2(loại)
Trường hợp 3: x>=5
=>5x-19/2=2
=>5x=23/2
hay x=23/10