Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Duy Hưng
Xem chi tiết
Trần Chí Bảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2018 lúc 1:53

2). Vì EA là tiếp xúc (O) và từ kết quả câu 1) ta có E A 2 = E R . E Q = E P 2 .

Từ đó có  E A = E P ⇒ D A P ^ = E A P ^ − E A D ^ = A P E ^ − A C D ^ = P A C ^

Do đó AP  là phân giác D A C ^ ⇒ Q C = Q D ⇒ Q M ⊥ C D

Dương Thiên Tuệ
Xem chi tiết
Cô Hoàng Huyền
4 tháng 1 2018 lúc 16:19

A B D C M P Q I K R E F

a) Gọi I, K lần lượt là trung điểm của AP và DP. Ta có :

IK song song và bằng 1/2 AD hay bằng 1/2 BC.

KM = DM - DK = DC/2 - DP / 2 = PC/2

Mà \(\widehat{IKM}=\widehat{ADC}=\widehat{BCP}\)

\(\Rightarrow\Delta IKM\sim\Delta BCP\left(c-g-c\right)\Rightarrow\widehat{BPC}=\widehat{IMP}\)

Mà \(\widehat{BPC}=\widehat{ABP}\) (AB // PC) ; \(\widehat{ABP}=\widehat{AQR}\) (Hai góc nội tiếp cùng chắn cung AR)

Do đó \(\widehat{IME}=\widehat{IQE}\Rightarrow\) Tứ giác IMQE nội tiếp.

\(\Rightarrow\widehat{EIQ}=\widehat{EMQ}\)

Mà IE // AF (Đường trung bình) nên \(\widehat{IEQ}=\widehat{FAQ}\)  (Đồng vị) 

\(\Rightarrow\widehat{FAQ}=\widehat{FMQ}\) hay tứ giác AMQF nội tiếp.

Do đó đường tròn ngoại tiếp tam giác AQF đi qua A, M cố định.

Vậy tâm đường tròn thuộc đường trung trực của AM.

b) Ta có \(\widehat{EPR}=\widehat{BPC}=\widehat{ABP}=\widehat{AQE}\) nên \(\Delta EPR\sim\Delta EQP\left(g-g\right)\Rightarrow\frac{EP}{EQ}=\frac{ER}{EP}\Rightarrow EP^2=ER.EQ\)

Vì AE là tiếp tuyến nên \(\widehat{EAR}=\widehat{AQE}\Rightarrow\Delta EAR\sim\Delta EQA\left(g-g\right)\Rightarrow\frac{EA}{EQ}=\frac{ER}{EA}\Rightarrow EA^2=EQ.ER\)

\(\Rightarrow EP^2=EA^2\Rightarrow EP=EA=EF\)

\(\Rightarrow\widehat{FAP}=90^o\Rightarrow\widehat{FMQ}=90^o\) (Hai góc nội tiếp cùng chắn cung FQ)

\(\Rightarrow MQ\perp CD\)

phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 2:59

a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

AD=BC

góc D=góc C

=>ΔAKD=ΔBHC

=>CH=DK

Xét tứ giác ABHK có

AB//HK

AK//HB

=>ABHK là hình bình hành

=>AB=HK

b: KH=AB=7cm

=>DK+HC=13-7=6cm

=>DK=HC=6/2=3cm

\(BH=\sqrt{13^2-3^2}=\sqrt{160}=4\sqrt{10}\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}\cdot BH\cdot\left(AB+CD\right)\)

\(=\dfrac{1}{2}\cdot4\sqrt{10}\left(7+13\right)=40\sqrt{10}\left(cm^2\right)\)

Thảo Vi
Xem chi tiết
quyen nang nang
Xem chi tiết
quyen nang nang
21 tháng 7 2021 lúc 20:04

help

 

Thai Minh Nguyen
Xem chi tiết
Đặng Ngọc Quỳnh
15 tháng 11 2020 lúc 5:45

Kẻ OI vuông góc với FG tại I. Ta chứng minh OI=OM =a/2 (a là cạnh của hình vuông)

KHI đó GF tiếp xúc với đường tròn tại I

Hai tam giác vuông ADG và  FBK có:

\(\widehat{DAG}=\widehat{KFB}\)\(\widehat{A_1}+\widehat{A_2}=90^0\Rightarrow\widehat{A_1}+\widehat{K_1}=90^0\)MÀ \(\widehat{K_1}+\widehat{KFB}=90^0\))

\(\Rightarrow\Delta ADG~\Delta FBK\Rightarrow\frac{AD}{FB}=\frac{DG}{BK}\)

\(\Rightarrow DG=\frac{AD}{FB}.BK=\frac{a}{3a}.\frac{a}{2}=\frac{2a}{3}\)

Từ đó \(CG=\frac{a}{3};MG=\frac{a}{2}-\frac{a}{3}=\frac{a}{6}\)

Trong tam giác vuông CGF có:

\(GF^2=CF^2+CG^2=\frac{a^2}{16}+\frac{a^2}{9}=\frac{25a^2}{144}\Rightarrow CF=\frac{5a}{12}\)

Ta có: \(S_{OGF}=S_{OMCN}-\left(S_{ÒNF}+S_{OMG}+S_{CGF}\right)\)\(=\frac{a^2}{4}-\left(\frac{a^2}{16}+\frac{a^2}{24}+\frac{a^2}{24}\right)=\frac{5a^2}{48}\)(1)

Mặt khác: \(S_{OGF}=\frac{1}{2}.OI.GF=OI.\frac{5a}{24}\)(2)

Từ (1);(2) \(\Rightarrow\frac{5a^2}{48}=OI.\frac{5a}{24}\Rightarrow OI=\frac{a}{2}\)

Vậy GF tiếp xúc với đường tròn tâm O tại I

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
15 tháng 11 2020 lúc 5:48

đánh dấu A1 vào góc DAG , A2 vào góc BAC, K1 vào góc BKC. kẻ OM vuông góc DC, kẻ OG, kẻ OI vuông góc GF

Khách vãng lai đã xóa
demilavoto
Xem chi tiết
trang chelsea
27 tháng 1 2016 lúc 18:37

ok con de