321+587x32=???
1/2+1/5x4/5=???
a)2/5+3/5x4/9-1/3
b)(5/2-1/3)x9/2-1/2
`a)` `2/5 + 3/5 xx 4/9 - 1/3`
`= 2/5 + 4/15 - 1/3`
`= 6/15 + 4/15 - 5/15`
`= 1/3`
`b)` `( 5/2 - 1/3 ) xx 9/2 - 1/2`
`= ( 15/6 - 2/6 ) xx 9/2 - 1/2`
`= 13/6 xx 9/2 - 1/2`
`= 39/4 - 2/4`
`= 37/4`
1/5x4/7-3/7x1/5-1/5
1/5x (4/7- 3/7- 1)=1/5x -6/7= -6/35
1/5x4/7+3/7x1/5-1/5
\(\dfrac{1}{5}\times\dfrac{4}{7}+\dfrac{3}{7}\times\dfrac{1}{5}-\dfrac{1}{5}\)
\(=\dfrac{4}{35}+\dfrac{3}{35}-\dfrac{1}{5}\)
\(=\dfrac{7}{35}-\dfrac{1}{5}\)
\(=\dfrac{1}{5}-\dfrac{1}{5}\)
\(=0\)
Tính bằng cách thuận tiện nhất a) 2/5x4/3-2/5:3 b) 2010/2018:1/2+7/2018:1/2+1/2018:1/2
(Dấu . là dấu nhân)
a/\(\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}:3\)
\(=\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}\cdot\dfrac{1}{3}\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{4}{3}-\dfrac{1}{3}\right)\)
\(=\dfrac{2}{5}\cdot1\)
\(=\dfrac{2}{5}\)
b/\(\dfrac{2010}{2018}:\dfrac{1}{2}+\dfrac{7}{2018}:\dfrac{1}{2}\)
\(=\left(\dfrac{2010}{2018}+\dfrac{7}{2018}\right):\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}:\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}\cdot2\)
\(=\dfrac{2017}{1009}\)
a, \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) : 3
= \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) \(\times\) \(\dfrac{1}{3}\)
= \(\dfrac{2}{5}\) \(\times\) ( \(\dfrac{4}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{2}{5}\) \(\times\) 1
= \(\dfrac{2}{5}\)
b, \(\dfrac{2010}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{7}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{1}{2018}\) : \(\dfrac{1}{2}\)
= \(\dfrac{2010}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{7}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{1}{2018}\) \(\times\) \(\dfrac{2}{1}\)
= \(\dfrac{2}{1}\) \(\times\) ( \(\dfrac{2010}{2018}\) + \(\dfrac{7}{2018}\) + \(\dfrac{1}{2018}\))
= 2 \(\times\) \(\dfrac{2018}{2018}\)
= 2 \(\times\) 1
= 2
tính bằng 2 cách
a)(3/5+1/2)x4/5
b)2/5x3/7+2/5x4/7
a) C1:
= 11/10 x 4/5 = 44/50 = 22/25
C2:
= 3/5 x 4/5 + 1/2 x 4/5 = 12/25 + 2/5 = 22/25
b) C1:
= 2/5 x (3/7 + 4/7) = 2/5 x 1 = 2/5
C2:
= 6/35 + 8/35 = 14/35 = 2/5
a)(3/5+1/2)x4/5
= \(\left(\dfrac{6}{10}+\dfrac{5}{10}\right)\times\dfrac{4}{5}=\dfrac{11}{10}\times\dfrac{4}{5}=\dfrac{22}{25}\)
\(=\dfrac{3}{5}\times\dfrac{4}{5}+\dfrac{1}{2}\times\dfrac{4}{5}=\dfrac{12}{25}+\dfrac{2}{5}=\dfrac{22}{25}\)
b)2/5x3/7+2/5x4/7
\(=\dfrac{6}{35}+\dfrac{8}{35}=\dfrac{14}{35}=\dfrac{2}{5}\)
\(=\dfrac{2}{5}\times\left(\dfrac{3}{7}+\dfrac{4}{7}\right)=\dfrac{2}{5}\times1=\dfrac{2}{5}\)
\(\)
tính thuận tiện
8/13+4/9+1/3+5/13+3=
8/5x4/7+4/7x 2/5 -1=
8/13+4/9+1/3+5/13+3=
(8/13+5/13)+(4/9+3/9)+3=
1+7/9+3=4 7/9
8/5x4/7+4/7x2/5=
4/7x(8/5+2/5)
=4/7x2=8/7
a) kết quả bằng 43/9
b) hiện tại chưa tính ra
Khoanh vào chữ đặt trước câu trả lời đúng:
Số gồm 5 triệu, 4 chục nghìn, 3 trăm, 2 chục, 1 đơn vị là:
A. 5 400 321 C. 5 004 321
B. 5 040 321 D. 5 430 021
thực hiện phép chia
(-3x3 + 5x2 - 9x + 15) : (-3 + 5)
(x4 - 2x3 + 2x -1) : (x2 - 1)
(5x4 + 9x3 - 2x2 - 4x -8) : (x-1)
(5x3 + 14x2 + 12x + 8) : (x+2)
c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)
\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)
\(=5x^3+14x^2+12x+8\)
d) Ta có: \(\dfrac{5x^3+14x^2+12x+8}{x+2}\)
\(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}\)
\(=\dfrac{5x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)}{x+2}\)
\(=5x^2+4x+4\)
thực hiện phép chia
(-3x3 + 5x2 - 9x + 15) : (-3 + 5)
(x4 - 2x3 + 2x -1) : (x2 - 1)
(5x4 + 9x3 - 2x2 - 4x -8) : (x-1)
(5x3 + 14x2 + 12x + 8) : (x+2)
c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)
\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)
\(=5x^3+14x^2+12x+8\)