I x - 2 I + x - 3 = 0
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0Giải phương trình:
1. (x - 4)2 - 25 = 0
2. (x - 3)2 - (x - 1)2 = 0
3. (x2 - 4)(2x +3) = (x2 - 4)(x - 1)
4. (x2 - 1) - (x + 1)(2 - 3x) = 0
5. x3 + x2 + x + 1 = 0
6. x3 + x2 - x - 1 = 0
7. 2x3 + 3x2 + 6x + 5 = 0
8. x4 - 4x3 - 19x2 + 106x - 120 = 0
9. (x2 - 3x + 2)(x2 + 15x + 56) + 8 = 0
1 ) \(\left(x-4\right)^2-25=0\)
\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)
\(\Leftrightarrow-2\left(2x-4\right)=0\)
\(\Leftrightarrow x=2.\)
3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)
4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)
5 ) \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)
6 ) \(x^3+x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
7 ) \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=-1.\)
8 ) \(x^4-4x^3-19x^2+106x-120=0\)
\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)
\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)
\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)
\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)
Đặt \(x^2+6x-7=t\)
\(\Leftrightarrow t\left(t-9\right)+8=0\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)
Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)
Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)
Vậy ........
2.(x-3)-3.(3-x)=15-3x
(x+1).(x+2)<0
(x^2 + 1 ) . ( x+2)>0
Tìm x
1) -12(x-5)+7(3-x)=5
2) (x-2)*(x+4)=0
3) (x-2)*(x+15)=0
4) (7-x)*(x+19)=0
5) (x-3)*(x-5)<0
1,-12(x-5)+7(3-x)=5
=>-12x+60+21-7x=5
=>-12x-7x+60+21=5
=>-19x+81=5
=>-19x=5-81
=>-19x=-76
=>x=(-76):(-19)
=>x=4
2,(x-2) (x+4) =0
=>+,x-2=0 => x=2
+,x+4=0 => x=-4
Vậy x=2 hoặc x=-4
3,(x-2) (x+15) =0
=>+,x-2=0 =>x=2
+,x+15=0 =>x=-15
Vậy x=2 hoặc x=-15
4,(7-x) (x+19) =0
=>+,7-x=0 =>x=7
+,x+19=0 =>x=-19
Vậy x=7 hoặc x=-19
5,(x-3) (x-5)<0
=>x-3 và x-5 là hai số khác dấu
TH1
+,x-3<0 =>x<3(1)
+,x-5>0 =>x>5 (2)
Từ (1) và(2) => 5<x<3(Vô lí nên trường hợp này bị loại)
TH2
+,x-3>0 =>x>3 (3)
+,x-5<0 =>x<5 (4)
Từ (3) và (4) =>3<x<5 => x=4
Vậy x=4
Chú bn hc tốt hơn nha!!
Tìm x \(\in\)Z , biết:
a)(2x-5)+17=6
b)10-2(4-3x)=-4
c)-12+3(-x+7)=-18
d)24(3x-2)=-3
e)-45:5(3x-2x)=3
g)x(x+7)=0
h)(x+12)(x-3)=0
i)(-x+5)(3-x)=0
k)x(2+x)(7-x)=0
l)(x-1)(x+2)(-x-3)=0
a) (2x-5) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = -11
2x = -11 + 5
2x = -6
x = -6 : 2
x = -3
* Các câu b→e bạn cũng làm tương tự theo trật tự như vậy là được
* Các câu từ g → l thì bạn áp dụng lí thuyết sau:
Tích của hai số bằng 0 khi một trong hai số đó bằng 0
VD : g) x(x+7)=0
⇒ hoặc là x = 0 hoặc là x+7 = 0
( Bạn làm phép tính nhớ bỏ dấu ngoặc vuông trước nhé )
b: \(\Leftrightarrow2\left(4-3x\right)=14\)
=>4-3x=7
=>3x=-3
=>x=-1
c: \(\Leftrightarrow3\left(7-x\right)=-18+12=-6\)
=>7-x=-2
=>x=9
d: \(\Leftrightarrow3x-2=-\dfrac{1}{8}\)
=>3x=15/8
=>x=5/8
e: \(\Leftrightarrow5\left(3x-2x\right)=-15\)
=>x=-3
g: =>x=0 hoặc x+7=0
=>x=0 hoặc x=-7
h: =>x+12=0 hoặc x-3=0
=>x=3 hoặc x=-12
k: =>x=0 hoặc x+2=0 hoặc 7-x=0
=>\(x\in\left\{0;-2;7\right\}\)
l: =>x-1=0 hoặc x+2=0 hoặc x+3=0
=>\(x\in\left\{1;-2;-3\right\}\)
Tìm x,biết:
a, x.(x−2)+x−2=0
b, 5x.(x−3)−x+3=0
a/ \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy ...
b/ \(5x\left(x-3\right)-x+3=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy ..
a. x.(x - 2) + x - 2 = 0
\(\Leftrightarrow\)x(x-2)+(x-2)=0
\(^{_{ }\Leftrightarrow}\)(x-2)(x+1)=0
\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy x\(\in\)\(\left\{2;-1\right\}\)
b. 5x(x-3)-(x+3)
\(^{_{ }\Leftrightarrow}\)5x(x-3) + (x-3) = 0
\(^{_{ }\Leftrightarrow}\)(x-3)(5x+1) = 0
\(\Rightarrow\)\(\left\{{}\begin{matrix}x-3=0\\5x+1=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=3\\x=\dfrac{-1}{5}\end{matrix}\right.\)
Vậy...
các bạn làm mấy bài tìm x này theo bảng xét dấu hộ mk
a. I 5+2x I +2x=x-3
b.I x+1 I + I x+2 I=0
c.I 3x-1 I - I 2x+3 I = 0
d. I x-1 I -I 2-x I +x=0
a) x (x+3)=0
b)(x-2)(5-x)=0
c)(x-1)(x2+1)=0
a, x(x+3)=0
=>x hoặc x+3=0
=>x+3=0
=>x=0-3
=>x=-3
=>x= 0 hoặc x=-3
b, (x-2)(5-x)=0
=>x-2 hoặc 5-x=0
=>x= 0+2 hoặc x= 5-0
=>x= 2 hoặc x= 5
c, (x-1)(x2+1)=0
=>x-1 hoặc x2-1=0
=>x=1 ->(1)
x2-1=0
=>x2=1
=>x=1
Vậy x=1
a) x(x+3)=0
=>x=0 hoặc x+3=0
x=-3
Vậy x=0; x=-3
b)(x-2)(5-x)=0
=>x-2=0 hoặc 5-x=0
x=2 x=5
Vậy x=2; x=5
c)(x-1)(x2+1)=0
=>x-1=0 hoặc x2+1=0
x=1 x2=-1(vô lí)
Vậy x=1
a)\(x\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
b)\(\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)
c)\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-1=0\) (vì \(x^2+1>0\))
\(\Leftrightarrow x=1\)
So sánh
a,A= √x - 5/√x + 1 vs 2 (x > hoặc = 0)
b,B= -√x + 1/3√x + 2 vs -1/3 (x > hoặc = 0)
(x - 3 ) . (x +2 ) > 0
(x^2 +1). (x+2)>0
Mọi người giúp mình nhé.
a) <=> x-3 > 0 hoặc x+2 > 0
x> 3 hoặc x> -2
b) <=> \(x^2+1\) > 0 hoặc x+2 > 0
x^ 2 > -1 (loại ) hoặc x> -2
vậy x > -2