Cho tam giác ABC có các góc B,C nhọn. Kẻ AH ⊥ BC. Biết AC = 10cm, HB = 5cm, HC = 6cm. Tính A B 2
A. 100
B. 61
C. 64
D. 89
câu 1 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC. Biết AB = 20cm, BH = 16cm, HC = 5cm. Tính AH, AC.
câu 2 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC, biết AC = 15cm, HB = 5cm, HC = 9cm . Tính độ dài cạnh AB.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Cho tam giác ABC có các góc B,C nhọn. Kẻ AH vuông góc với BC biết AC=15cm;HB=5cm;HC=17cm. Tính AB
Cho tam giác ABC có Góc B , C nhọn . Kẻ AH vuông góc BC biết :
AC = 15cm , HB = 5cm , HC = 9cm . Tính cạnh AB
Áp dụng định lý Pi ta go, ta có:
AH2 + HC2 = AC2
<=> AH2 = AC2 - HC2
<=> AH2 = 152 - 92
<=> AH2 = 144
Áp dụng định lý Pi ta go, ta có:
AB2 = AH2 + BH2
<=> AB2 = 144 + 52
<=> AB2 = 144 + 25
<=> AB2 = 169
=> \(AB=\sqrt{169}=13\)
=> AB = 13 cm
nha
Bạn tự vẽ hình nhé.
Xét tam giác AHC vuông tại H có: AC2 = AH2 + HC2 (Định lí Pitago)
=> 152 = AH2 + 92
=> AH2 = 144
Xét tam giác AHB vuông tại H có AB2 = AH2 + HB2 (Định lí Pitago)
=> AB2 = 144 + 52
=> AB2 = 169
=> AB = 13 (cm)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh rằng:
a) Tam giác AHB bằng tam giác AHC.
b) AH là tia phân giác của góc BAC.
c) Giả sử AC=5cm, BC=6cm. Tính số đo các đoạn HB, HC, AH.
HB=HC
AH CẠNH CHUNG
AB=AC (CẠNH HUYỀN)
DO ĐÓ:AHB=AHC (C-C-C)
MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!
cho tam giác ABC , kẻ AH vuông góc với BC . biết AB=5cm , BH=3cm , BC=10cm
a) biết góc C = 30 độ . tính góc HAC ?
b) tính độ dài các cạnh AH ,HC,AC
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
mình chịu thoiii
khôn vừa th , 1 câu hỏi đáp cho đc bao nhiêu điểm mà đòi phải làm tận 10 bài ,khôn như m thì dell ai muốn làm
1) Cho tam gics ABC cân, AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC ( H thuộc BC )
a, Chứng minh rằng HB=HC
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC). Chứng minh tam giác HDE cân
d, So sánh HD và HC
2) Cho tam giác ABC có CA = CB = 10cm, AB = 12cm. Kẻ CI vuông góc với AB, kẻ IH vuông góc với AC, IK vuông góc với BC
a, Chứng minh HC = CK và tính độ dài CI
b, Chứng minh IH = IK
c, Chứng minh HK//AB
Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá
a, Ta có : BH = HC = BC : 2
=> BH = HC = 8 : 2
=> BH = HC = 4 ( cm )
=> BH = HC
b, - Xét tam giác AHB vuông tại H có :
AC2 = AH2 + HC2
=> 52 = AH2 + 42
=> 25 = AH2 + 16
=> AH2 = 25 + 16
=> AH2 = 41
=> AH = 20,5 ( cm )
1) Cho tam gics ABC cân, AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC ( H thuộc BC )
a, Chứng minh rằng HB=HC
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC). Chứng minh tam giác HDE cân
d, So sánh HD và HC
2) Cho tam giác ABC có CA = CB = 10cm, AB = 12cm. Kẻ CI vuông góc với AB, kẻ IH vuông góc với AC, IK vuông góc với BC
a, Chứng minh HC = CK và tính độ dài CI
b, Chứng minh IH = IK
c, Chứng minh HK//AB
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm. Kẻ bd là tia phân giác của góc ABC (D ∈ AC)
a) Tính AD,DC
b) Đường cao AH (H ∈ BC) cắt BD tại I. CM AB^2 = BC.HB. Từ đó tính HB,HC
c) CMR: IH.DC = AD^2
*Mong các cao nhân giúp gấp với ạ :'(( *
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC=8cm(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; CD=5cm