(-4).(-5).(-6)
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
(4+5)*(4+5+6)*(4+5+6+7)*. . . *(4+5+6+...+91)/5*(5+6)*(5+6+7)*...*(5+6+7+...+91)
Tìm x biết \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^4}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)=2\(2^x\)
Sửa đề: 3^5+3^5+3^5; 2^x
=>\(2^x=\dfrac{4^5\cdot4}{3^5\cdot3}\cdot\dfrac{6^5\cdot6}{2^5\cdot2}\)
=>\(2^x=\left(\dfrac{4}{3}\right)^6\cdot\left(\dfrac{6}{2}\right)^6=4^6=2^{12}\)
=>x=12
Tìm số tự nhiên n, biết rằng:
\(\dfrac {4^{5} + {4^{5}} +{4^{5}} + {4^{5}}}{{3^{5}} + {3^{5}} + {3^{5}}}\) . \(\dfrac{6^{5} + {6^{5}} + {6^{5}} + {6^{5}} + {6^{5}} + {6^{5}} }{2^{5} + 2^{5}} = 2^{n}\)
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
\(\Rightarrow\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\)
\(\Rightarrow\dfrac{4^5.4.6^5.6}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{\left(2.2\right)^5.2.2.\left(3.2\right)^5.3.2}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{2^5.2^5.2.2.3^5.2^5.3.2}{3^5.3.2^5.2}=2^n\)
Rút gọn vế trái ta có :
\(2^5.2.2.^5=2^n\)
\(\Rightarrow2^{12}=2^n\)
\(\Rightarrow n=12\) ( Thỏa mãn điều kiện \(n\in N\) )
Vậy n =12
Số tự nhiên n thỏa mãn:
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)
=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)
=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.
4^5+4^5+4^5+4^5/3^5+3^5+3^5.6^5+6^5+6^5+6^5+6^5+6^5/2^5+2^5=8^x Tìm x
9+2+5+3+7+8+4+7+4+7+2+4+2+9+6+4+65+6+7+4+6+4+6+3+7+4+8+5+9+08+87+1+2+3+4+2+3+2+5+6+767+5+75+6+4+6+5+66+5+7+546+46+43+6+3+6+4+6+7+8878+68+68+6+7+9+9
\(9+2+5+3+7+8+4+2+9+6+4+65+6+7+4+6+3+7+4+8+5+9+08+87+1+2+3+4+2+3+2+5+6+767+5+75+6+4+6+5+66+5+7+546+46+43+6+3+6+4+6+7+8878+68+68+6+7+9+9=10961\)
Bài 1:Tính
1) (1/2)^3 (3/2)^2
2) (2/3)^3 (3/2)^5
3) (5/4)^5 (4/5)^7
4) (-5/6)^6 (6/5)^8
5)(-4/3)^3 (9/16)^5
6) (1/3)^4 (-9/2)^6
7)(-4/9)^3 (-27/20)^4
8) (0,2)^4 . 5^6
9) (-4/3)^3 (9/16)^5
10) (-0,2)^3 .(-5)^5
11) (-4)^4 .(0,25)^6
12) $^2 . (0,2)^3
13) (0,5)^2 . 2^4
14) (-0,5)^3 .2^6
15) (-0,5)^5 .(-2)^10
16) (0,125)^2 .8^4
17) (0,125)^5 . (-8)^4
18) (-0,125)^7 . 8^10
19) (-0,1)^4 . 10^7
20) (0,1)^5 . (-10)^10
Giúp mình với ạ,mình cảm ơn ạ
1: =1/8*9/4=9/32
2: =8/27*243/32=9/4
3: =(5/4*4/5)^5*(4/5)^2=16/25
4: \(=\left(-\dfrac{5}{6}\cdot\dfrac{6}{5}\right)^2\cdot\left(\dfrac{6}{5}\right)^2=\dfrac{36}{25}\)
5: \(=\left(-\dfrac{4}{3}\right)^3\cdot\left(\dfrac{3}{4}\right)^{10}=\left(-1\right)\left(\dfrac{3}{4}\right)^7=-\left(\dfrac{3}{4}\right)^7\)
6: \(=\left(\dfrac{1}{3}\cdot\dfrac{-9}{2}\right)^4\left(-\dfrac{9}{2}\right)^2=\left(-\dfrac{3}{2}\right)^4\cdot\dfrac{81}{4}=\dfrac{9}{4}\cdot\dfrac{81}{4}=\dfrac{729}{16}\)
8: =(0,2*5)^4*5^2=25
10: =-0,5^5*2^10
=-0,5^5*2^5*2^5
=-32
13: =(0,5*2)^2*2^2=4
>, <, = ?
5 + 5 … 10 | 10 … 4 + 6 | 5 … 10 – 4 |
5 + 4 … 10 | 6 + 4 … 4 + 5 | 6 … 9 – 4 |
Lời giải chi tiết:
5 + 5 = 10 | 10 = 4 + 6 | 5 < 10 – 4 |
5 + 4 < 10 | 6 + 4 > 4 + 5 | 6 > 9 – 4 |
5 + 5=10 | 10= 4 + 6 | 5 <10 – 4 |
5 + 4 >10 | 6 + 4 > 4 + 5 | 6 > 9 – 4 |
5+4> 10 nhó mik viết nhầm thông cảm nhoa
Tìm x biết
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^{\left|2x+6\right|}\)
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^{\left|2x+6\right|}\)
\(\Leftrightarrow\frac{4.\left(4^5\right)}{3.\left(3^5\right)}.\frac{6.\left(6^5\right)}{2.\left(2^5\right)}=8^{\left|2x+6\right|}\)
\(\Leftrightarrow\frac{4^6.6^6}{3^6.2^3}=8^{\left|2x+6\right|}\)
\(\Leftrightarrow\frac{\left(2^2\right)^6.\left(2.3\right)^6}{3^6.2^3}=8^{\left|2x+6\right|}\)
\(\frac{2^{12}.2^6.3^6}{3^6.2^3}=\frac{2^{18}.3^6}{3^6.2^3}=\frac{2^{15}.1}{1.1}=2^{15}=8^{\left|2x+6\right|}\)
=> 215=(23)|2x+6|
215=23|2x+6|
<=> 3|2x+6|=15
|2x+6|=15:3
|2x+6|=5
\(\Rightarrow\orbr{\begin{cases}2x+6=5\\2x+6=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{-11}{2}\end{cases}}\)