Nếu -5a > -5b thì:
A. a < b
B. a > b
C. a = b
Cho a và b là các số nguyên. Chứng minh rằng:
a) Nếu 2a + b ⋮ 13 và 5a - 4b ⋮ 13 thì a - 6b ⋮ 13
b) Nếu 100a + b ⋮ 7 thì a + 4b ⋮ 7
c) Nếu 3a + 4b ⋮ 11 thì a + 5b ⋮ 13
giúp mik gấp
1 Cho a+b+c =0; a^2+b^2+c^2 =1.CMR a^4+b^4+c^4=1/2
2Cho a^2-b^2=4c^2 CMR (5a-3b+8c)(5a-3b-8c)=(3a-5b)^2
3 CMR Nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 với x,y khác o thì a/x=b/y
cho 5a+5b-c/c=5b+5c-a/a=5c-5a-b/b. tính giá trị biểu thứcP=(a+b(b+c)(c+a)/16120abc
Cho các số hữu tỉ a,b,c khác 0 sao cho 5a+5b-c/c=5b+5c-a/a=5c+5a-b/b
TTính ggggiá trị bbiểu thức
P=(a+b). (b+c). (c+a)/16120abc
+ Nếu a+b+c=0 thì a+b=-c; b+c=-a; c+a=-b
P = -c.(-a).(-b)/16120abc = -1/16120
+ Nếu a+b+c khác 0
Áp dung t/c của dãy tỉ số = nhau ta có:
5a+5b-c/c = 5b+5c-a/a = 5c+5a-b/b
= (5a+5b-c)+(5b+5c-a)+(5c+5a-b)/c+a+b
= 9(a+b+c)/a+b+c = 9
=> 5a+5b-c=9c; 5b+5c-a=9a; 5c+5a-b=9b
=> 5a+5b=10c; 5b+5c=10a; 5c+5a=10b
=> a+b=2c; b+c=2a; c+a=2b
P = 2c.2a.2b/16120abc = 1/2015
Bài 1: cho biết a+b=5. Tính các tổng
a) A= 5a+5b
b) B= 13a+5b+13b+5a
c) C= 25a+16b+4b-5a
a) A=5a+5b
A=5(a+b)
A=5.5
A=25
b) B=13a+5b+13b+5a
B=13(a+b)+5(a+b)
B=(13+5)(a+b)
B=18.5
B=90
c) C=25a+16b+4b-5a
C=a(25-5) +b(16+4)
C=20a+20b
C=20(a+b)
C=20.5
C=100
cho 5a-b+2c/c=5b-2c+a/a=5c-2a+b/b(a,b,c>0).Tinh gtbt A=(4b+2a)*(4c+2b)*(4a+2c)/(5a-2b)*(5b-2c)*(5c-2a)
chứng minh
a) nếu 2a+b chia hết cho 13 va 5a-4b chia hết cho13 thì a - 6b chia hết cho 13
b)nếu 100a + b thì a+4b chia hết cho 7
c)nếu 3a+4b chia hết cho 11 thì a+5b cũng chia hết cho 11
Chứng minh rằng :
a) Nếu a ≤ b thì -2a+3 ≥ -2b+3
b) Nếu a > b thì 2a-5 > 2b-5
c) Nếu a > b thì 5a > 5b-1
a) vì a≤ b
Nhân cả 2 vế của BĐT với -2
=> -2a≥ -2b
Cộng cả 2 vế của BĐT với 3
=> -2a+3 ≥ -2b+3
b) vì a>b
Nhân cả 2 vế với 2
=> 2a>2b
Cộng cả 2 vế với (-5)
=> 2a -5> 2b-5
c) vì a>b
Nhân cả 2 vế với 5
=> 5a>5b (1)
Vì 0> -1
Cộng cả 2 vế với 5b
=> 5b> 5b -1 (2)
Từ (1) và (2) => 5a> 5b-1
a/ a ≤ b =>-2a ≥ -2b => -2a+3 ≥ -2b+3
b/ a > b => 2a > 2b => 2a-5 > 2b-5
c/ a > b => 5a > 5b
0 > -1
=> 5a + 0 > 5b + (-1)
<=> 5a > 5b -1
Cho a, b thuộc Z. CMR:
a) Nếu 2a+ b chia hết cho 13 và 5a -4b chia hết cho 13. CMR a-6b chia hết cho 13.
b) Nếu a0b chia hết cho 7 thì a+4b chia hết cho 7.
c) Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11.
Các bạn giúp mk vs!!!
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
DK: a,b thuoc N, a > 0
\(\overline{a0b}=100a+b⋮7\)
\(\Rightarrow4.\left(100a+b\right)⋮7\)
\(\Rightarrow400a+4b⋮7\)
\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)
\(\)
Ta co: \(3a+4b⋮11\Rightarrow7.\left(3a+4b\right)⋮11\)
\(\Rightarrow21a+28b⋮11\)
\(\text{ma }21a+28b+a+5b=22a+33b⋮11\)
\(\Rightarrow a+5b⋮11\text{ vi }21a+28b⋮11\)
chứng minh rằng:
a) n.(n+1).(n+2)chia hết cho 6
b)Nếu 3a+5b chia hết cho 8 thì 5a+3b chia hết cho 8
c)Nếu a+2b chia hết cho 8 thì 5a+2a chia hết cho 8
(giúp mình với)
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b