Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tống Cao Sơn
Xem chi tiết
CTVHoidap
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2022 lúc 20:44

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

Nguyễn Việt Lâm
25 tháng 3 2022 lúc 20:56

2.

Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)

\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)

Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)

\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)

\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)

Do \(a;b;c\in\left[0;1\right]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow ab+c+1\ge a+b+c=2\)

\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)

\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)

\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)

Hoàn toàn tương tự, ta có: 

\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)

Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)

\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)

\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng

Thư Anh Nguyễn
Xem chi tiết
Witch Rose
29 tháng 6 2019 lúc 10:42

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ac}{abc}=1\Leftrightarrow ab+bc+ac=abc\)

kết hợp gt: a+b+c=1

\(\Rightarrow abc-ab-ac-bc+a+b+c-1=0\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\left(đpcm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2017 lúc 8:56

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2018 lúc 11:06

Đáp án B

Anh Mai
Xem chi tiết
Trung
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

Đinh Tuấn Việt
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2018 lúc 1:53

Lizy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 7 2019 lúc 15:17

Đáp án C

Phương pháp giải:

Chọn hệ số a, b, c hoặc đánh giá tích để biện luận số nghiệm của phương trình

Lời giải:

Cách 1. Ta có: 

Lại có  có 3 nghiệm thuộc khoảng 

Cách 2. Chọn  và đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt