Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
T.Ps
28 tháng 7 2019 lúc 9:53

#)Giải :

Ta có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Lại có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow\) M không phải là số nguyên 

Kiệt Nguyễn
28 tháng 7 2019 lúc 9:53

Vì a,b,c, > 0 nên

\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)(1)

\(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{a+b}{a+b+c}\)(2)

\(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)(3)

Cộng từng vế của (1), (2), (3) suy ra \(1< M< 2\)

Vậy M không là số nguyên

Rose
28 tháng 7 2019 lúc 15:13

Vì  \(a,b,c>0\) nên ta có:

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

\(\Rightarrow M< \frac{a+c+a+b+b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(1)

Lại có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}=1\)(2)

Từ (1) và (2) \(\Rightarrow1< M< 2\)

\(\Rightarrow M\)không phải là số nguyên (đpcm)

Nguyễn Thị Kim Nguyên
Xem chi tiết
soyeon_Tiểu bàng giải
22 tháng 8 2016 lúc 18:28

M = a/a+b + b/b+c + c/c+a

M > a/a+b+c + b/a+b+c + c/a+b+c

M > a+b+c/a+b+c

M > 1 (1)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

M = a/a+b + b/b+c + c/c+a

M < a+c/a+b+c + b+c/a+b+c + b+c/a+b+c

M < 2.(a+b+c)/a+b+c

M < 2 (2)

Từ (1) và (2) => 1 < M < 2, không là số nguyên ( đpcm)

Trần Hùng Minh
23 tháng 8 2016 lúc 19:43

*Ta có :

 a/a+b > a/a+b+c (1)

 b/b+c > b/a+b+c (2)

 c/c+a > c/a+b+c (3)

Từ (1); (2) và (3) suy ra:

 a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1 (a)

*Ta có công thức: 

 - Với a; b và c thuộc N* ta có thể rút ra:

 a/b < a+c/b+c

 Áp dụng công thức trên, ta có:

 a/a+b < a+c/a+b+c (4)

 b/b+c < b+a/a+b+c (5)

 c/c+a < c+b/a+b+c (6)

Từ (4); (5) và (6) suy ra:

 a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = a+c+b+a+c+b/a+b+c = 2a+2b+2c/a+b+c = 2(a+b+c)/a+b+c = 2 (b)

Từ (a) và (b) suy ra:

 1 < a/a+b + b/b+c + c/c+a < 2

=> 1 < M < 2

=> M không phải là số nguyên.

Vậy M không phải là số nguyên.

   

   

Mạnh Khôi
27 tháng 3 2017 lúc 21:51

Để M không phải là số nguyên thì cần chứng minh 1 < m < 2

Cm : M > 1

a/a + b > a/a + b + c  ; b/b + c > b/a + b +c ; c/c +a > c/a + b +c

suy ra M > a/ a + b + c        +      b/ a + b + c           +  c/a +b +c

       hay M > a + b + c / a +b + c = 1

Cm : M < 2

a/ a + b < 2a/a + b + c , b/b +c < 2b/a +b +c , c/c+a < 2c/a+ b +c

nên M < 2a + 2b +2c / a + b + c

    hay M < 2

 Vì 1 < M < 2 nên M không phải là số nguyên 

Phạm Bá Gia Nhất
Xem chi tiết
Thanh Tùng DZ
6 tháng 6 2018 lúc 9:15

Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học toán với OnlineMath

Nguyễn Thị Thanh Trúc
Xem chi tiết
mèo
Xem chi tiết
Vũ Quý Đạt
28 tháng 12 2015 lúc 0:27

ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)

ta lại có tương tự M<2

suy ra Mko ơphair số nguyên

Ham Eunjung
Xem chi tiết
Dung Trần
Xem chi tiết
Trần Thị Kim Dung
31 tháng 10 2016 lúc 12:48

Ta có:

\(\frac{a}{a+b}\)>\(\frac{a}{a+b+c}\)

\(\frac{b}{b+c}\)>\(\frac{b}{a+b+c}\)

\(\frac{c}{c+a}\)>\(\frac{c}{a+b+c}\)

Cộng theo vế ,ta được:

\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\)>\(\frac{a}{a+b+c}\)+\(\frac{b}{a+b+c}\)+\(\frac{c}{a+b+c}\)

=> M> \(\frac{a+b+c}{a+b+c}\)=1

=> M>1 (1)

Ta lại có:

\(\frac{a}{a+b}\)<\(\frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}\)<\(\frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}\)<\(\frac{c+b}{a+b+c}\)

Cộng theo vế,ta được:

\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\)<\(\frac{a+c}{a+b+c}\)+\(\frac{b+a}{a+b+c}\)+\(\frac{c+a}{a+b+c}\)

=> M<\(\frac{a+c+b+a+c+b}{a+b+c}\)=\(\frac{2a+2b+2c}{a+b+c}\)=2

=> M<2 (2)

Từ (1) và (2) => 1<M<2.

=> M không phải là số nguyên (đpcm)

Phan Thụy Hải
6 tháng 11 2016 lúc 23:15

Ta có: M=(a/a+b)+(b/b+c)+(c/c+a)=(a+b+c)/(a+b+b+c+c+a)=(a+b+c)/2(a+b+c)=1/2

=>M=1/2,mà 1/2 không thuôc Z

Vậy M không phải là số nguyên

phạm ngọc anh
Xem chi tiết
luong long
Xem chi tiết
Trịnh Quỳnh Nhi
7 tháng 2 2018 lúc 18:33

Ta có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

Lại có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

Từ (1) và (2) => 1<M<2

=> M không là số tự nhiên