Xét các tam giác ABC có BC cố định, đường cao ứng với cạnh BC luôn bằng 2 cm (h.95). Đỉnh A của các tam giác đó nằm trên đường nào?
Cho tam giác ABC cố định. Xét các hình chữ nhật có hai đỉnh trên cạnh BC, hai đỉnh còn lại thuộc hai cạnh kia của tam giác. chứng minh tâm của các hình chữ nhật này nằm trên một đường cố định
Em có thể tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC có ^A=90, hai đỉnh A và B cố định và C thay đổi trên nửa đường thẳng At vuông góc với AB tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC va P,Q,R lần lượt là các tiếp điểm của đường tròn này với các cạnh AC, BC, AB, hai đường thẳng PQ và AI cắt nhau tại D.
a)CM B, D, Q, R nằm trên một đường tròn.
b) CM rằng khi C thay đổi trên At đường thẳng PQ luôn đi qua một điểm cố định.
Cho tam giác ABC có ^A=90, hai đỉnh A và B cố định và C thay đổi trên nửa đường thẳng At vuông góc với AB tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC va P,Q,R lần lượt là các tiếp điểm của đường tròn này với các cạnh AC, BC, AB, hai đường thẳng PQ và AI cắt nhau tại D.
a)CM B, D, Q, R nằm trên một đường tròn.
b) CM rằng khi C thay đổi trên At đường thẳng PQ luôn đi qua một điểm cố định.
Điền vào chỗ trống:
a) Tập hợp các điểm cách đều đường thẳng a cố định một khoảng bằng 2 cm là ...
b) Tập hợp đỉnh A các tam giác vuông ABC có cạnh huyền BC cố định và BC = 4cm là ...
c) Tập hợp giao điểm O của hai đường chéo của hình chữ nhật ABCD có cạnh BC cố định là ...
a) Hai đường thẳng song song với đường thẳng a và cách đường thẳng a một khoảng là 2cm.
b) Đường tròn O B C 2 với O là trung điểm của BC
c) Đường thẳng trung trực của đoạn BC trừ trung điểm BC.
Cho tam giác ABC có đáy BC cố định và đỉnh A di động trên một đường thẳng d cố định song song với đường thẳng BC. Chứng minh rằng tam giác ABC luôn có diện tích không đổi ?
Gọi h (AH) là đường cao của \(\Delta ABC\) thì h là hằng số không đổi và cạnh đáy BC bằng a cố định .
Ta có : \(S_{ABC}=\dfrac{1}{2}BC.AH=\dfrac{1}{2}a.h\) không đổi .
Vậy diện tích tam giác ABC luôn không đồi nếu có đáy BC cố định và đỉnh A di động trên 1 đường thẳng d cố định song song với đường thẳng BC .
Tam giác ABC có đáy BC cố định và dài 4cm. Đỉnh A di chuyển trên đường thẳng d ( d ⊥ BC). Gọi H là chân đường cao hạ từ đỉnh A đến đường thẳng BC. Diện tích tam giác tỉ lệ thuận với chiều cao AH không?
Diện tích của tam giác tỉ lệ thuận với chiều cao.
Cho tam giác ABC đều cạnh a. Xét các hình chữ nhật có 2 đỉnh nằm trên cạnh BC, 2 đỉnh còn lại thuộc 2 cạnh AB và AC.
a, Tìm hình chữ nhật có S max
b,C/m tâm các hình chữ nhạt di qua một đường thẳng cố định
a) Đặt tên các điểm như hình vẽ.
Giả sử BC = a; BM = x. Ta có MN = QP = a - 2x
Áp dụng định lý Ta let ta có:
\(\frac{AQ}{AB}=\frac{QP}{BC}\Rightarrow AQ=\frac{AB.QP}{BC}=a-2x\)
\(\Rightarrow QB=AB-AQ=a-\left(a-2x\right)=2x\)
\(\Rightarrow QM=\sqrt{QB^2-BM^2}=\sqrt{4x^2-x^2}=x\sqrt{3}\)
\(\Rightarrow S_{MNPQ}=MN.QM=\left(a-2x\right).x\sqrt{3}\)
\(=-2\sqrt{3}x^2+a\sqrt{3}x\)
\(=-2\sqrt{3}\left(x^2-2.\frac{a}{4}.x+\frac{a^2}{16}\right)+\frac{a^2\sqrt{3}}{8}\)
\(=-2\sqrt{3}\left(x-\frac{a}{4}\right)^2+\frac{a^2\sqrt{3}}{8}\le\frac{a^2\sqrt{3}}{8}\)
Vậy diện tích lớn nhất của hình chữ nhật là \(\frac{a^2\sqrt{3}}{8}\) khi BM = BC/4
b) Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC có cạnh BC cố định Đỉnh A chuyển động trên một đường thẳng song song với BC. CHỨNG MINH RẰNG Trọng tâm G của tam giác chạy trên 1 đường thẳng cố định
Tam giác ABC có đáy BC cố định, diện tích không đổi nên chiều cao AH không đổi vì thế đỉnh A chuyển động trên một đường thẳng song song với BC và cách BC một khoảng bằng h không đổi.
Vậy trọng tâm G của tam giác chạy trên đường thẳng song song BC và cách BC một khoảng h/3.
Cho đường tròn (O;R), dây BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H.
a.CMR tứ giác ADHE nội tiếp.
b. Giả sử góc BAC=60°, hãy tính khoảng cách từ tâm O đến cạnh BC theo R
c.CMR đường thẳng kẻ qua A và vuông góc với DE luôn đi qua 1 điểm cố định.