Biết a+b+c=2015 va 1/(b+c) + 1/(c+a) +1/(a+b). tính B=a/(b+c) +b/(c+a)+ c/(a+b)
Bài 1 :Tính =(a/b+c)+(b/a+c)+(c/a+b),biết a/b+c=b/a+c=c/a+b
Bài 1 :Tính =(a/b+c)+(b/a+c)+(c/a+b),biết a/b+c=b/a+c=c/a+b
Bài 1 :Tính =(a/b+c)+(b/a+c)+(c/a+b),biết a/b+c=b/a+c=c/a+b
@@@@@@
từ a/(b+c)= b/(a+c)=c/(a+b) suy ra được 2 trường hợp:
a=b=c thế vào tìm ra kết quả là 3/2 hoặc a+b+c=0 thế vào tìm được kết quả là -3
đặt P = \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Cộng 1 vào mỗi tỉ số , ta được :
\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)( 1 )
Xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; a + c = -b ; b + c = -a
\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Xét a + b + c \(\ne\)0 thì từ ( 1 ) , ta có :
a = b = c \(\Rightarrow\)P = \(\frac{3}{2}\)
Cho a,b,c là số thực khác 0 .Biết a+b-c/c=b+c-a/a=c+a-b/b .Hãy tính giá trị biểu thức B =(1=b/a)*(1+a/c)*(1+c/b)
a) Biết 2a , b - 1 , c - 2 TL với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
b) Biết 2a , b - 1 , c - 2 TLN với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
a: Theo đề, ta có:
\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)
Do đó: a=-1; b-1=-8/3; c-2=-10/3
=>a=-1; b=-5/3; c=-4/3
b: Theo đề, ta có:
\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)
Do đó: a=-5/4; b-1=-15/8; c-2=-3/2
=>a=-5/4; b=-7/8; c=1/2
1. So sanh:
2014×2015-2/2013+2013×2014 voi 2014×2015-1/2014×2015
2. Cho a, b, c thuoc N* va a nho hon b.
Hay chung to: a/b nho hon a+c/b+c va 1 nho hon a/a+b +b/b+c+c/a+c
cho a=1. tính S biết S = -(a-b-c) + (-c+b+a) - (a+b)
S = - a + b + c - c + b + a - a - b
S = - a
Vì a = 1 => S = -1
S = -(a - b - c) + (-c + b + a) - (a + b)
= -a + b + c - c + b + a - a - b
= (-a + a - a) + (b + b - b) + (c - c)
= -a + b
= -1 + b = b - 1
Cho a,b,c là số nguyên dương
Tính:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Biết:\(a+b+c=2018\)
Biết:\(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{6}{2018}\)
Giúp mình với ạ, xin cảm ơn các bạn rất nhiều!
Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)
\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)
\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)
Vậy giá trị của biểu thức đó là 3.
a) Tính a , b , c ,d biết a , b , c , d TL vs 2 , 5 , 7 , 6 và a + b + c + d = 7820
b) Tính a , b , c ,d biết a , b , c , d TLN vs 2 , 5 , 7 , 6 và a + b + c + d = 7820
a) a,b,c,d tỉ lệ với 2,5,7,6
\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{d}{6}\). Áp dụng tính chất dãy tỉ bằng nhau
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{d}{6}=\frac{a+b+c+d}{2+5+7+6}=\frac{7820}{20}=391\)
Với \(\frac{a}{2}=391\Rightarrow a=782\)Với \(\frac{b}{5}=391\Rightarrow b=1955\)Với \(\frac{c}{7}=391\Rightarrow c=2737\)Với \(\frac{d}{6}=391\Rightarrow d=2346\)