Cho hai đường thẳng AB và CD cắt nhau tại O tạo thành góc A O C ^ có số đo bằng 450.
a) Tính số đo B O D ^ , A O D ^
b) Viết tên cặp góc đối đỉnh
c) Viết tên các góc bù nhau
1.Hai đường thẳng AB và CD cắt nhau tại O, tạo thành góc bằng 110º. Tính ba góc còn lại
2. Hai đường thẳng AB và CD cắt nhau tại O. Biết – = 20º. Tính mỗi góc , , , .
3. Hai đường thẳng CD và EF cắt nhau tại O tạo thành bốn góc không có điểm trong chung. Biết tổng của ba trong bốn góc ấy bằng 300º. Tính số đo của bốn góc nói trên (cho biết < )
4. Hai đường thẳng AB và CD cắt nhau tại O tạo thành góc bằng 50º. Gọi OM là tia phân giác của góc , ON là tia đối của OM. Tính ,
cho hai đường thẳng AB và CD cắt nhau tại O tạo thành góc AOC có số đo bằng 45 độ
a) tính góc BOD và góc AOD
b) viết tên các góc bù nhau
a) Vì AOC + BOC = 180 độ
và BOC + BOD = 180 độ
=> AOC = BOD ( 2 góc đối đỉnh )
mà AOC = 45*
=> BOD = 45*
Vì AOD và AOC là 2 góc kề bù ( CD cắt AB tại O )
=> AOD + AOC = 180*
Thay AOC = 45*
=> AOD = 180* - 45* = 135*
b) Các cặp góc bù nhau là:
+ AOC và BOC.
+ BOC và BOD
+ BOD và AOD
+ AOD và AOC
Cho 2 đường thẳng AB,CD cắt nhau tại O tạo Cho hai đthẳng AB và CD cắt nhau tại O tạo thành 4 góc (ko kể góc bẹt) . Biết AOC+DOB .Tính số đo 4 góc đó
Cho hai đường thẳng AB và CD cắt nhau tại O tạo thành bốn góc ( không tính góc bẹt). Biết BOC bằng 60 độ , tính số đo bốn góc
Số đo các góc còn lại lần lượt là \(120^0;120^0;60^0\)
cho hai đường thẳng AB và CD cắt nhau tại O tạo thành góc AOC có số đo bằng 45 độ
a, tính góc BOD và AOD
chứng minh Ax // By
: Cho hai đường thẳng AB và CD cắt nhau tại O tạo thành . Tính số đo các góc BOD, BOC, AOD.
4. Hai đường thẳng AB và CD cắt nhau tại O sao cho = 60°.
a) Tính số đo các góc còn lại.
b) Vẽ tia Ot là phân giác của và Ot' là tia đối của tia Ot. Chứng minh Ot' là tia phân giác của
5. Hai đường thẳng AB và CD cắt nhau tại M tạo thành có số đo bằng 30°.
a) Tính số đo các góc và .
b) Viết tên các cặp góc đối đỉnh và các cặp góc bù nhau.
6. Hai đường thẳng xx' và yy' cắt nhau tại A, biết = 40°.
a) Tính số đo các góc , và
b) Vẽ tia phân giác At của và tia phân giác At' của . Chứng minh hai tia At và At' là hai tia đối nhau.
---------------------------------------------------------------------------------------------------
Hai đường thẳng AB và CD cắt nhau tại O tạo thành bốn góc khác góc bẹt ( trong đó góc AOC < góc BOC ). Tính số đo của bốn góc đó, biết rằng có ba góc có tổng số đo bằng 230 độ.
TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)
Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)
=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)
TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)
Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOD}+\widehat{BOD}=180o\)
=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)
vô lí do \(\widehat{AOC}>\widehat{BOC}\)
3) Cho hai đường thẳng MN và PQ cắt nhau tại A tạo thành góc MAP có số đo bằng 450.
a) Tính số đo góc NAQ.
b) Tính số đo góc MAQ .
c Viết tên các cặp góc đối đỉnh.
d) Viết tên các cặp góc kề bù nhau.
a) Ta có:
∠MAP= ∠NAQ (hai góc đối đỉnh)
⇒ ∠NAQ = 45o
⇒ ∠NAQ = 45o
b) Ta có:
∠MAP + ∠MAQ = 180o ( hai góc kề bù )
⇒ 45o + ∠MAQ = 180o
⇒ ∠MAQ = 180o − 45o = 135o
c) Các cặp góc đối đỉnh là:
∠MAP, ∠NAQ
∠NAP, ∠MAQ
d) Các cặp góc bù nhau là:
∠MAP, ∠NAP
∠MAP, ∠MAQ
∠NAQ, ∠NAP
∠NAQ, ∠MAQ