Cho Δ A B C ∽ Δ A ' B ' C ' theo tỉ số đồng dạng 2. Gọi AM và A'M' lần lượt là các đường trung tuyến của tam giác này. Khi đó tỉ số A M A ' M ' bằng
A. 2
B. 1 2
C. 1 4
D. 4
Cho Δ A'B'C' ∼ Δ A''B''C'' theo tỉ số đồng dạng k 1 , Δ A''B''C'' ∼ Δ ABC theo tỉ số đồng dạng là k 2 . Hỏi Δ A''B''C'' ∼ Δ A'B'C' và Δ A'B'C' ∼ Δ ABC đồng dạng theo tỉ số nào?
Cho Δ A'B'C' ∼ Δ A''B''C'' theo tỉ số đồng dạng k 1 , Δ A''B''C'' ∼ Δ ABC theo tỉ số đồng dạng là k 2 . Hỏi Δ A''B''C'' ∼ Δ A'B'C' và Δ A'B'C' ∼ Δ ABC đồng dạng theo tỉ số nào?
1. Cho ΔABC nội tiếp đường tròn (O). D, E, F lần lượt là trung điểm của BC, AC, AB. Kẻ DD' song song với OA, EE' song song với OB, FF' song song với OC. Chững minh DD', EE', FF' đồng quy
2. Cho tam giác ABC nội tiếp đường tròn (O;R). Diểm M thuộc cung nhỏ BC. Gọi I, K, H theo thứ tự là hình chiếu vuông góc của M trên AB, AC, BC. Gọi P, Q lần lượt là trung điểm của AB, HK
a) Chứng minh:ΔBMA đồng dạng ΔHMK
b) Chứng minh: ΔBMH đồng dạng ΔPMQ TỪ ĐÓ SUY RA MQ⊥PQ
c) Cho ΔABC đều. Xác định vị trí của điểm M trên cũng BC để MA+MB+MC đạt giá trị lớn nhất
3. Cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia OA, BO, CO lần lược cắt BC, AC, AB tại M, N, P.
a) Chứng minh \(\frac{S_{BOC}}{S_{ABC}}=\frac{OM}{AM}\)
b) Chứng minh: \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\)≥9
Cho tam giác ABC có ba góc nhọn, các điểm M, N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H
a) Nối MN, Δ AHB đồng dạng với tam giác nào?
b) Gọi G là trọng tâm Δ ABC, chứng minh Δ AHG đồng dạng với Δ MOG?
c) Chứng minh ba điiểm M, O, G thẳng hàng?
Cho tam giác ABC đồng dạng với tam giác A'B'C'. Biết \(\frac{AB}{A'B'}\)=k.
a) Viết các góc tương ứng bằng nhau và các tỷ số giữa các cạnh tương ứng
b) Gọi AM và A'M' theo thứ tự lần lượt là trung tuyến của tam giác ABC và tam giác A'B'C'. C/m: \(\frac{BM}{B'M'}\)=k.
c) C/m: Tam giác ABM đồng dạng tam giác A'B'M'. Suy ra tỷ số \(\frac{AM}{A'M'}\)
Các bạn giải nhanh câu c) giùm nha
Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ hai đường cao BD và CE.
a) Chứng minh: ΔABD đồng dạng ΔACE . Suy ra : AB.AE = CA. AD
b) Chứng minh: Δ ADE đồng dạng Δ ABC .
c) Tia DE và CB cắt nhau tại I. Chứng minh: Δ IBE đồng dạng Δ IDC .
d) Gọi O là trung điểm BC. Chứng minh ID.IE= OI^2 - OC^2
Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ hai đường cao BD và CE.
a) Chứng minh: ΔABD đồng dạng ΔACE . Suy ra : AB.AE = CA. AD
b) Chứng minh: Δ ADE đồng dạng Δ ABC .
c) Tia DE và CB cắt nhau tại I. Chứng minh: Δ IBE đồng dạng Δ IDC .
d) Gọi O là trung điểm BC. Chứng minh ID.IE= OI^2 - OC^2
cho ΔABC có trung tuyến AM , MD là đường phân giác trong của ΔMAB .Từ D kẻ đường thẳng // với BC cắt AM,AC lần lượt tại N,E
a , MN là đường gì của ΔDME
b, ΔMND, ΔMNE, ΔMDE là Δ gì
c,c/m ME là đường phân giác của Δ AMC
a: Xét ΔABM có DN//BM
nên DN/BM=AD/AB
hay DN/CM=AD/AB(1)
Xét ΔACM có NE//MC
nên NE/MC=AE/AC(2)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(3)
Từ (1), (2) và (3) suy ra ND=NE
hay N là trung điểm của DE
=>MN là đường trung bình
b: Xét ΔNMD có \(\widehat{NMD}=\widehat{NDM}\left(=\widehat{DMB}\right)\)
nên ΔNMD cân tại N
Xét ΔMNE có NE=NM
nên ΔMNE cân tại N
Xét ΔMDE có
NM là đường trung tuyến
MN=DE/2
Do đó: ΔMDE vuông tại M
Cho A chuyển động trên ( O; R ) đường kính BC sao cho AB<AC. Gọi H là hình chiếu của A trên BC, M và N lần lượt là trung điểm của HB, HC. Đường thẳng đi qua M vuông góc AN cắt AH tại I.Tiếp tuyến của ( O; R) tại A, B cắt nhau tại H.
1) Δ HMI ∼ Δ HAN. Tính AI theo R trong trường hợp H là trung điểm OB
2) Gọi E là trung điểm AH. Chứng Minh K, E, C thẳng hàng
3) Xác định vị trí của H để chu vi Δ AHO lớn nhất