Chứng minh rằng : B = \(2^{2^{2n+1}}+3\) là số chính phương với mọi n nguyên dương
CHỨNG MINH : A=111...1{2n số 1)-22..2(n số 2)là 1 số chính phương với mọi n nguyên dương
bài 4
a) chứng minh rằng với mọi n thì 2n^2 +2n +3 ko là số chính phương
b)chứng minh rằng với mọi số tự nhiên n thì 3^n + 1002 ko là số chính phương
các bạn trình bày ra giúp mình nhé
Tao không biết và tao cũng chẳng quan tâm
mình mới học lớp 5 thôi, thành thật xin lỗi bạn nha
cho số nguyên dương n chứng minh với mọi ước dưng d của 2n^2, số n^+d ko thể là số chính phương
chứng minh rằng với mọi số nguyên n thì n^4+2n^3+2n^2+2n+1 không là số nguyên dương
giúp mình với nh ^^
\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)
Em xin mạn phép sửa đề: Chứng minh với mọi số nguyên n thì A (là cái biểu thức bên trên) luôn không âm.
Ta có: \(A=n^2\left(n+1\right)^2+\left(n+1\right)^2=\left(n+1\right)^2\left(n^2+1\right)\ge0\)
Suy ra đpcm.
Chứng minh rằng \(B=2^{2^{2n+1}}+3\)là hợp số với mọi số nguyên dương n
C/m rằng với mọi số nguyên n thì n^2+n+1 không chia hết cho 49 Tìm số nguyên x để biểu thức x^4-x^2+2x+2 là số chính phươngTìm số nguyên dương n để A=n^2006+n^2005+1Tìm số nguyên n để A=n^3-n^2-n-2 là số nguyên tốChứng minh rằng với mọi số nguyên m;n thì m.n.(m^2-n^2) chia hết cho 6Tìm n để B=n^2+2n+200 là số chính phương
Mn làm giúp mình nha thứ 7 mình cần rồi :D Cảm ơn trước
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
a) Chứng minh rằng với mọi số nguyên x,y là số nguyên thì giá trị của đa thức:
A= (x+y)(x+2y)(x+3y)(x+4y)+y4 là một số chính phương.
b) Chứng minh rằng n3 +3n2 +2n chia hết cho 6 với mọi số nguyên.
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
Cho n là số nguyên dương sao cho \(\frac{n^2-1}{3}\)là tích của hai số tự nhiên liên tiếp. Chứng minh rằng : 2n-1 là số chính phương và n là tổng hai số chính phương liên tiếp.
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )