Cho hai phương trình x 2 - m x + 2 = 0 và x 2 + 2 x - m = 0 . Có bao nhiêu giá trị của m để một nghiệm của phương trình này và một nghiệm của phương trình kia có tổng là 3?
A. 0
B. 1
C. 2
D. 3
cho hai phương trình: x2-(2m+n)x-3m=0 (1) và x2-(m+3n)x-6=0 (2)
Tìm m và n để hai phương trình đã cho tương đương
Cho hai phương trình \(x^2-8x+4m=0\left(1\right)\) và x\(^2+X-4m\)=0 (2)
a) Tìm m để hai phương trình có nghiệm chung.
b) Tìm m để một nghiệm của phương trình (1) gấp đôi một nghiệm của phương trình (2).
a) Cho phương trình $x^{2}-m x-10 m+2=0$ có một nghiệm $x_{1}=-4$. Tìm $m$ và nghiệm còn lại.
b) Cho phương trình $x^{2}-6 x+7=0 .$ Không giải phương trình, hãy tính tổng và tích của hai nghiệm của phương trình đó.
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
Vậy m=3, và ngiệm còn lại x2=7
a)
m = 3
x2=7
Cho hai phương trình \(\sqrt{x-6}\)+ x3-6x2+x-6=0(1) và \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}\)=\(\sqrt{x-2}\)(2) (m là tham số). Số các giá trị của tham số m để phương trình (2) là phương trình hệ quả của phương trình (1).
A.0 B.1 C.2 D.3
cho hai phương trình bậc hai:x2 +x +m-2=0 và x+(m-2)x-8 =0 .Tìm m để hai phương trình trên có nghiệm chung
Cho phương trình x^2 + 2(m - 3)x + m^2 =0 a. Giải phương trình với m = 0 b. Tìm m pt có hai nghiệm phân biệt. Tính tổng và tích hai nghiệm theo m
a. Bạn tự giải
b.
Pt có 2 nghiệm phân biệt khi:
\(\Delta'=\left(m-3\right)^2-m^2>0\)
\(\Leftrightarrow-6m+9>0\)
\(\Leftrightarrow m< \dfrac{3}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2\end{matrix}\right.\)
1)Xác định m và n để các phương trình sau đây là phương trình bậc hai
a) (m-2).x^3+3.(n^2-4n+m).x^2-4x+7=0
b) (m^2-1).x^3-(m^2-4m+3).x^2-3x+2=0
2) Cho các phương trình sau. Gọi x1 là nghiệm cho trước hãy định m để phương trình có nghiệm x1 và tính nghiệm còn lại
a) x^2-2mx+m^2-m-1 =0 (x1=1)
b) (m-1)x^2+(2m-2).x+m+3 =0 (x1=0)
c) (m^2-1).x^2+ (1-2m).x+2m-3 = 0 (x1=-1)
Lời giải:
1.
Khi $m=-1$ thì pt trở thành: $x^2+4x+2=0$
$\Leftrightarrow (x+2)^2=2$
$\Leftrightarrow x+2=\pm \sqrt{2}$
$\Leftrightarrow x=-2\pm \sqrt{2}$
2.
Ta thấy: $\Delta'=(m-1)^2+2m=m^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm pb với mọi $m$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m$
Khi đó:
$x_1^2+x_1-x_2=5-2m=3-2(m-1)=3-x_1-x_2$
$\Leftrightarrow x_1^2+2x_1-3=0$
$\Leftrightarrow (x_1-1)(x_1+3)=0$
$\Leftrightarrow x_1=1$ hoặc $x_1=-3$
Nếu $x_1=1$
$\Leftrightarrow x_2+1=2m-2$ và $x_2=-2m$
$\Rightarrow 2x_2+1=-2$
$\Leftrightarrow x_2=\frac{-3}{2}$
$-2m=x_1x_2=\frac{-3}{2}$
$m=\frac{3}{4}$
-------------
Nếu $x_1=-3$
$\Leftrightarrow x_2-3=2m-2$ và $-3x_2=-2m$
$\Leftrightarrow m=\frac{-3}{4}$
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
a)Cho phương trình : (m+2)x^2 - (2m-1)x-3+m=0 tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho nghiệm này gấp đôi nghiệm kia
b)Cho phương trình bậc hai: x^2-mx+m-1=0. Tìm m để phương trình có hai nghiệm x1;x2 sao cho biểu thức R=2x1x2+3/x1^2+x2^2+2(1+x1x2) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
c)Định m để hiệu hai nghiệm của phương trình sau đây bằng 2
mx^2-(m+3)x+2m+1=0
Mọi người giúp em giải chi tiết ra với ạ. Em cảm ơn!