Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
na na
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Quoc Binh
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

Hoàng
Xem chi tiết
Hoàng
11 tháng 3 2021 lúc 21:38

undefined

Hoàng
11 tháng 3 2021 lúc 21:39

undefined

thùy linh
Xem chi tiết
YangSu
6 tháng 1 2023 lúc 16:44

Bài 5 :

Thay \(x=-3\) vào pt : \(3x+m-x-1=0\)

\(\Leftrightarrow3\left(-3\right)+m-\left(-3\right)-1=0\)

\(\Leftrightarrow-9+m+3-1=0\)

\(\Leftrightarrow m-7=0\)

\(\Leftrightarrow m=7\)

Vậy \(m=7\) để pt nhận \(x=-3\) là nghiệm

Bài 6 :

Thay \(x=1\) vào pt : \(\left(2m-4\right)x+6=0\)

\(\Leftrightarrow2mx-4x+6=0\)

\(\Leftrightarrow2m-4+6=0\)

\(\Leftrightarrow2m+2=0\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\) để pt nhận \(x=1\) là nghiệm

na na
Xem chi tiết
ntht
Xem chi tiết
Mai Nguyễn
Xem chi tiết
trà my
Xem chi tiết
Kiyotaka Ayanokoji
9 tháng 5 2020 lúc 18:17

 x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1) \(\left(a=1;b=-2\left(m-1\right);c=m^2+4m+13\right)\)

Ta có \(\Delta'=\left(-\left(m-1\right)\right)^2-1.\left(m^2+4m+13\right)\)

              \(=m^2-2m+1-m^2-4m-13\)

               \(=-6m-12=-6\left(m+2\right)\)

a+b, Để phương trình (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-6\left(m+2\right)\ge0\)

                                                                            \(\Leftrightarrow m+2\le0\)

                                                                            \(\Leftrightarrow m\le-2\)

Câu b giống với câu a nhé!

Khách vãng lai đã xóa
Giáp Văn Long
Xem chi tiết
Lê Song Phương
14 tháng 3 2022 lúc 18:09

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

Khách vãng lai đã xóa
Sakura
Xem chi tiết