Tổng bình phương các nghiệm của phương trình 2 x + 1 + 3 − x = 1 + 3 + 2 x − x 2
A. 4
B. 8
C. 10
D. 9
Cho phương trình: x^2 + 2(m-2)x -(2m-7)=0.Gọi x1,x2 là hai nghiệm của phương trình (1).
Tìm m để phương trình (1) có tổng bình phương (1) có tổng bình phương các nghiệm đạt giá trị nhỏ nhất.
Tổng bình phương các nghiệm của phương trình \(x^3+1=2\sqrt[3]{2x-1}\) trên tập số thực bằng
Đặt \(\sqrt[3]{2x-1}=t\Rightarrow2x=t^3+1\)
Ta được hệ: \(\left\{{}\begin{matrix}x^3+1=2t\\t^3+1=2x\end{matrix}\right.\)
\(\Rightarrow x^3-t^3=2t-2x\)
\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2\right)+2\left(x-t\right)=0\)
\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2+2\right)=0\)
\(\Leftrightarrow x=t\) (do \(x^2+xt+t^2+2=\left(x+\dfrac{t}{2}\right)^2+\dfrac{3t^2}{4}+2>0\))
\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3=2x-1\)
\(\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
Tới đây bấm máy hoặc dùng Viet
Tổng bình phương các nghiệm của phương trình \(x^3+1=2\sqrt[3]{x^2+5x-2}-2\) trên tập số thực bằng
Em kiểm tra lại đề bài, pt này chắc chắn là ko giải được
Tìm tổng bình phương các nghiệm của phương trình \(\left(x-1\right)\left(x-3\right)+3\sqrt{x^2-4x+5}-2=0\)
\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)
Đặt \(\sqrt{x^2-4x+5}=t>0\)
\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)
\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)
tính tổng bình phương các nghiệm của phương trình: \(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
ĐK: \(x\ge2\)
\(pt\Leftrightarrow\sqrt{x-2}=3\sqrt{x^2-4}\)
\(\Leftrightarrow x-2=9x^2-36\)
\(\Leftrightarrow9x^2-x-34=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{17}{9}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2=4\)
Tổng các bình phương các nghiệm của phương trình x − 1 x − 3 + 3 x 2 − 4 x + 5 − 2 = 0 là:
A. 17
B. 4
C. 16
D. 8
Ta có x − 1 x − 3 + 3 x 2 − 4 x + 5 − 2 = 0
⇔ x 2 − 4 x + 5 + 3 x 2 − 4 x + 5 − 4 = 0
⇔ x 2 − 4 x + 5 − 1 x 2 − 4 x + 5 + 4 = 0
⇔ x 2 − 4 x + 5 = 1 x 2 − 4 x + 5 = − 4 ( V N )
⇔ x 2 − 4 x + 5 = 1 ⇔ x 2 − 4 x + 4 = 0 ⇔ x = 2
Vậy tổng bình phương các nghiệm là 2 2 = 4
Đáp án cần chọn là: B
Không giải phương trình \(x^2-11x+5=0\) (1)
a, Tính tổng bình phương các nghiệm của phương trình (1)
b, Lập phương trình bậc 2 có nghiệm là nghịch đảo các nghiệm của phương trình (1)
Tổng bình phương các nghiệm của phương trình 4 x 2 + x + 6 = 4 x − 2 + 7 x + 1 là:
A. 2
B. − 11 2
C. 11 2
D. 5 2
Điều kiện: x + 1 ≥ 0 ⇔ x ≥ − 1
Ta có: 4 x 2 + x + 6 = 4 x − 2 + 7 x + 1
⇔
4
x
2
−
4
x
+
1
+
5
x
+
5
=
2
2
x
−
1
+
7
x
+
1
⇔ 2 x − 1 2 + 5 x + 1 = 2 2 x − 1 + 7 x + 1
⇔ 2 x − 1 2 x + 1 + 5 = 2. 2 x − 1 x + 1 + 7
Đặt t = 2 x − 1 x + 1 , phương trình trở thành: t 2 + 5 = 2 t + 7
Điều kiện 2 t + 7 ≥ 0 ⇔ t ≥ − 7 2
Phương trình:
⇔ t 2 + 5 = 2 t + 7 2 ⇔ t 2 + 5 = 4 t 2 + 28 t + 49
⇔ 3 t 2 + 28 t + 44 = 0 ⇔ t = − 2 ( t m ) t = − 22 3 ( k t m )
+ Với t = − 2 ⇔ − 2 = 2 x − 1 x + 1 ⇔ x + 1 = − x + 1 2 *
Điều kiện − x + 1 2 ≥ 0 ⇔ x ≤ 1 2
Khi đó * ⇔ x + 1 = x 2 − x + 1 4 ⇔ x 2 − 2 x − 3 4 ⇔ 4 x 2 − 8 x − 3 = 0
Giả sử x 1 , x 2 là hai nghiệm của phương trình (1)
Theo Vi-et, ta có: x 1 + x 2 = 2 x 1 . x 2 = − 3 4
⇒ x 1 2 + x 2 2 = x 1 + x 2 2 − 2 x 1 . x 2 = 4 + 3 2 = 11 2
Đáp án cần chọn là: C
Tổng bình phương các nghiệm của phương trình 4 x 2 + x + 6 = 4 x − 2 + 7 x + 1 là:
A. 2
B. − 11 2
C. 11 2
D. 5 2
Điều kiện: x + 1 ≥ 0 ⇔ x ≥ 1
Ta có:
4 x 2 + x + 6 = 4 x − 2 + 7 x + 1
⇔ 4 x 2 − 4 x + 1 + 5 x + 5 = 2 ( 2 x − 1 ) + 7 x + 1
⇔ 2 x − 1 2 + 5 x + 1 = 2 2 x − 1 + 7 x + 1
⇔ 2 x − 1 2 x + 1 + 5 = 2. 2 x − 1 x + 1 + 7
Đặt t = 2 x − 1 x + 1 , phương trình trở thành: t 2 + 5 = 2 t + 7
Điều kiện 2 t + 7 ≥ 0 ⇔ t ≥ − 7 2
Phương trình:
⇔ t 2 + 5 = 2 t + 7 2 ⇔ t 2 + 5 = 4 t 2 + 28 t + 49
⇔ 3 t 2 + 28 t + 44 = 0 ⇔ t = − 2 ( t m ) t = − 22 3 ( k t m )
Với t = − 2 ⇔ − 2 = 2 x − 1 x + 1 ⇔ x + 1 = − x + 1 2 ( * )
Điều kiện − x + 1 2 ≥ 0 ⇔ x ≤ 1 2
Khi đó * ⇔ x + 1 = x 2 − x + 1 4 ⇔ x 2 − 2 x − 3 4 ⇔ 4 x 2 − 8 x − 3 = 0 ( 1 )
Giả sử x 1 , x 2 là hai nghiệm của phương trình (1)
Theo Vi-et, ta có:
x 1 + x 2 = 2 x 1 . x 2 = − 3 4 ⇒ x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 − 2 x 1 . x 2 = 4 + 3 2 = 11 2
Đáp án cần chọn là: C