Cho hai đường thẳng song song d và d’ và một điểm O không nằm trên chúng. Có bao nhiêu phép vị tự tâm O biến d thành d’?
A. 0
B. 1
C. 2
D. Có vô số
Cho hai đường thẳng song song d và d’.Có bao nhiêu phép vị tự với tỉ số k=100 biến d thành d’?
A. Không có phép nào
B. Có duy nhất một phép
C. Chỉ có hai phép
D. Có rất nhiều phép
Đáp án D
Có vô số phép vị tự tâm O tỉ số k = 100, với tâm O làđiểm bất kì nằm trên đường thẳng song song với d và cách d’ một khoảng = 100 lần d.
Chọn câu phát biểu đúng? Cho đường thẳng d và một điểm O nằm ngoài đường thẳng d . Qua O ta vẽ được : A. Vô số đường thẳng song song với d . B. Có một và chỉ một đường thẳng song song với d . C. Nhiều nhất một đường thẳng song song với d . D. Không vẽ được đường thẳng nào song song với d .
câu 1 :trong mp tọa độ Oxy cho 2 điểm A(-1;2) và B(5;4). giả sử có 1 con kiến đi từ A theo 1 đường thẳng đến 1 điểm M trên trục Ox, sau đó nó đi tiếp theo con đường thẳng từ M đến điểm B. Tìm tọa độ điểm M trên trục Ox để quãng đường mà con kiến đi từ A đến B là ngắn nhất.
câu 2: cho đường thẳng d: 2x-y+2=0 và d': 2x-y-6=0. phép đối xứng tâm biến đường thẳng d thành d' và biến trục Ox thành chính nó có tâm đối xứng là?
câu 3 : trong mp oxy cho 3 điểm A(1;1) ,B(4;1) ,c(4;3) .phép quay tâm O góc quay 90* biến tam giác ABC thành tam giác A'B'C' có tâm đường tròn ngoại tiếp là?
câu 4; trong mp Oxy cho đường thẳng d:2x+3y-3=0. ảnh của đt d qua phép vị tự tâm O tỉ số k=2 biến đường thẳng d thành đường thẳng có phương trình là?
cau5: cho các chữ cái dưới đây . có mấy chữ cái có trục đối xứng: A, B ,C ,D, Đ ,E, G, H, I ,K ,L?
câu này mà ở lớp 1 cả lớp 5 còn ko giải được.
mà hình như nó còn chẳng phải toán
Số phát biểuđúng:
1. Qua phép vị tự có tỉ số k ≠ 0 , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó
2. Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.
3. Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.
4. Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến thành chính nó.
5. Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó
6. Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với hệ số k
7. Trong phép vị tự tâm O, tỉ số k, nếu k < 0 thì điểm M và ảnh của nó ở về hai phía đối với tâm O.
8. Mọi phép dời hình đều là phép đồng dạng với tỉ số k = 1
9. Phép hợp thành của một phép vị tự tỉ số k và một phép đối xứng tâm là phép đồng dạng tỉ số
10. Hai đường tròn bất kì luôn có phép vị tự biến đường này thành đường kia
11. Khi k = 1 , phép vị tự là phép đồng nhất
12. Phép vị tự biến tứ giác thành tứ giác bằng nó
13. Khi k = 1, phép đồng dạng là phép dời hình
14. Phép đối xứng tâm là phép đồng dạng tỉ số k = 1
A.9
B.10
C.11
D.12
Đáp án C
Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14
2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.
3. Qua phép vị tự có tỉ số đường tròn biến thành chính nó.
12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó
Giả sử phép đối xứng tâm ĐO biến đường thẳng d thành đường thẳng d' . Chứng minh :
a) nếu d không đi qua tâm đối xứng O thì d song song với d' , O cách đều d và d' .
b) 2 đường thẳng d và d' trùng nhau khi và chỉ khi d đi qua O .
Giả sử phép đối xứng tâm ĐO biến đường thẳng d thành đường thẳng d' . Chứng minh :
a) nếu d không đi qua tâm đối xứng O thì d song song với d' , O cách đều d và d' .
b) 2 đường thẳng d và d' trùng nhau khi và chỉ khi d đi qua O .
Giả sử phép đối xứng tâm ĐO biến đường thẳng d thành đường thẳng d' . Chứng minh :
a) nếu d không đi qua tâm đối xứng O thì d song song với d' , O cách đều d và d' .
b) 2 đường thẳng d và d' trùng nhau khi và chỉ khi d đi qua O .
Số phát biểu đúng
1. Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy
3. Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó
4. 2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
5. Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )
6. Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng chứa a và cắt theo giao tuyến b thì b song song với a
7. Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó
8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
A. 8
B. 7
C. 6
D. 5
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
Cho hai đường thẳng d và d’ song song có bao nhiêu phép tịnh tiến biến đường thẳng d thành đường thẳng d’:
A. Không có phép tịnh tiến nào.
B. Có duy nhất một phép tịnh tiến.
C. Có 2 phép tịnh tiến.
D.Có vô số phép tịnh tiến.