Tập nghiệm của bất phương trình 3.9 x − 10.3 x + 3 ≤ 0 là T = a ; b . Khi đó a-b bằng
A. 1
B. 3 2
C. -2
D. 5 2
Gọi S1 là tập nghiệm của bất phương trình log 2 ( x + 5 ) + log 1 2 ( 3 - x ) ≥ 0 và S2 là tập nghiệm của bất phương trình log2(x + 1) ≥ 1. Khẳng định nào dưới đây đúng ?
A. S 1 ∩ S 2 = [ 1 ; 3 )
B. S 1 ∩ S 2 = [ - 1 ; 3 )
C. S 1 ∩ S 2 = - 1 ; 1
D. S 1 ∩ S 2 = 1 ; 3
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
Tập nghiệm của bất phương trình - x + 2 x - 3 ≤ 0 là:
A. ( - ∞ ;2] ∪ [3; + ∞ )
B. ( - ∞ ;2] ∪ (3; + ∞ )
C. ( - ∞ ;2) ∪ [3; + ∞ )
D. [2;3]
Đáp án: B
Giải bất phương trình - x + 2 x - 3 ≤ 0
Ta có bảng xét dấu vế trái của bất phương trình:
Vậy tập nghiệm của bất phương trình là: (- ∞ ;2] ∪ (3;+ ∞ )
Tập nghiệm của hệ bất phương trình 3 - x ≥ 0 x + 1 ≥ 0 là:
A. R
B. [-1;3]
C. ∅
D. (-1;3]
Đáp án: B
Ta có:
Vậy tập nghiệm của hệ bất phương trình là: [-1;3]
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là
A. 1 ; 2
B. - 1 ; 2
C. - 1 ; + ∞
D. 1 ; + ∞
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là:
A. (1;2)
B. (-1;2)
C. − 1 ; + ∞ .
D. 1 ; + ∞ .
Đáp án C
f ( t ) = t ( t 2 + 3 + 1 ) ⇒ f ' ( t ) = t 2 + 3 + 1 + t t t 2 + 3 > 0 ∀ t ( x + 2 ) ( ( x + 2 ) 2 + 3 + 1 ) > − x ( x 2 + 3 + 1 ) ⇔ ( x + 2 ) ( ( x + 2 ) 2 + 3 + 1 ) > − x ( ( − x ) 2 + 3 + 1 ) ⇔ f ( x + 2 ) > f ( − x ) ⇔ x + 2 > − x ⇔ x > − 1
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + 1 + x x 2 + 3 + 1 > 0 là
A. 1 ; 2
B. - 1 ; 2
C. − 1 , + ∞ .
D. 1 , + ∞ .
Tập nghiệm của hệ bất phương trình 2 x 2 + x - 6 > 0 3 x 2 - 10 x + 3 > 0 là:
A. S = ( - ∞ ;-2]
B. S = (3; + ∞ )
C. S = (-2;3)
D. S = ( - ∞ ;-2]∪(3; + ∞ )
Chọn D.
Ta có
Vậy tập nghiệm hệ bất phương trình là S = ( - ∞ ;-2] ∪ (3; + ∞ ).
Tập nghiệm của hệ bất phương trình 2 x + 1 > 3 x - 2 - x - 3 ≤ 0 là:
A. S= (- ∞ ; -3] ∪ (3;+ ∞ )
B. S = [-3;3)
C. S = (- ∞ ;3)
D. S = [- ∞ ;-3] ∪ (3;+ ∞ )
Chọn B.
Ta có:
Tập nghiệm của hệ bất phương trình là S = [-3;3).
Tìm tập nghiệm T của bất phương trình log π 4 log 2 x + 2 x 2 − x < 0 .
A. T = − 2 ; 1 .
B. T = − ∞ ; − 4 .
C. T = − 1 ; 1 .
D. T = 0 ; 2 .
Đáp án B
Điều kiện x < 0 .
log π 4 log 2 x + 2 x 2 − x < 0 ⇔ log π 4 log 2 x + 2 x 2 − x < log π 4 1
⇔ log 2 x + 2 x 2 − x > 1 ⇔ log 2 x + 2 x 2 − x > log 2 2
⇔ x + 2 x 2 − x > 2 ⇔ 2 x 2 − x > 2 − x ⇔ 2 x 2 − x > x 2 − 4 x + 4.
⇔ x 2 + 3 x − 4 > 0 ⇔ x > 1 x < − 4 .
Kết hợp điều kiện ta có T = − ∞ ; − 4 là tập nghiệm của bất phương trình.